Fragilidad sísmica de un edificio de concreto reforzado usando medidas de intensidad sísmica vectorial basadas en la forma espectral

Autores/as

  • Noel Zavala Gutiérrez Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México https://orcid.org/0000-0003-1455-5915
  • Edén Bojórquez Mora Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
  • Manuel Antonio Barraza Guerrero Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México https://orcid.org/0000-0002-7951-9934
  • Juan Bojórquez Mora Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
  • Almendra Villela y Mendoza Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México
  • José Ignacio Torres Peñuelas Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México https://orcid.org/0000-0002-0798-2145
  • José Rubén Campos Gaytán Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México https://orcid.org/0000-0002-8119-1421
  • Ricardo Sánchez Vergara Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, México https://orcid.org/0000-0002-9271-892X

DOI:

https://doi.org/10.37636/recit.v5n2e220

Palabras clave:

Medidas de intensidad sísmica, Forma espectral, Respuesta estructural, Superficies de fragilidad, Desempeño sísmico, Fragilidad sísmica

Resumen

Las medidas de intensidad sísmica vectorial han demostrado ser más eficientes en comparación con las medidas de intensidad sísmica tradicionales para predecir la respuesta de estructuras con comportamiento no lineal o aquellas dominadas por los modos superiores; sin embargo, pocos estudios han demostrado la habilidad de estas nuevas medidas para una   estimación apropiada de la fragilidad sísmica de edificios. En el presente trabajo se analizaron ocho medidas de intensidad sísmica vectorial compuestas por dos parámetros. Para todos los casos se utilizó la seudoaceleración en el modo fundamental de vibración de la estructura, Sa(T1), como primera componente del vector y la Aceleración Máxima del Suelo (AMS), Velocidad Máxima del Suelo (VMS), duración efectiva (TD), potencial del movimiento sísmico (ID) y los parámetros de forma espectral RT1,T2, NpSa, Npv y NpSv, como segunda componente del vector. Para evaluar la eficiencia de las medidas de intensidad sísmica vectorial en el análisis de fragilidad sísmica, un edificio de concreto reforzado de 10 niveles es sometido a 30 registros sísmicos de banda angosta obtenidos en sueño blando de la Ciudad de México. Los resultados demuestran que la medida de intensidad sísmica vectorial que presenta una mejor relación con la probabilidad de falla es <Sa(T1), NpSa>, en comparación con las otras medidas, especialmente respecto a Sa(T1) que es ampliamente usada en los códigos de construcción vigentes. Por lo tanto, es deseable que en los futuros reglamentos de construcción se consideren medidas de intensidad sísmica más apropiadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. Arias, "A measure of earthquake intensity. In Seismic Design for Nuclear Power Plants," Institute of Technology Press.1970.

G. W. Housner, "Measures of severity of ground shaking," U.S. Conference on Earthquake Engineering, vol. Earthquake Engineering Research Institute.1975.

V. Anand and S. R. Satish Kumar, "Seismic Soil-structure Interaction: A State-of-the-Art Review," Structures, vol. 16, pp. 317-326.2018. https://doi.org/10.1016/j.istruc.2018.10.009 DOI: https://doi.org/10.1016/j.istruc.2018.10.009

P. Cordova, G. G. Deierlein, S. Mehanny, and A. C. Cornell, "Development of a two-parameter seismic intensity measure and probabilistic assessment procedure," The second U.S.-Japan workshop on performance-based earthquake engineering methodology for reinforce concrete building structures, Sapporo, Hokkaido, 2001, pp. 187-206.

J. W. Baker and A. C. Cornell, "Vector-valued intensity measures for pulse-like near-fault ground motions," Engineering Structures, vol. 30, no. 4, pp. 1048-1057.2008. https://doi.org/10.1016/j.engstruct.2007.07.009 DOI: https://doi.org/10.1016/j.engstruct.2007.07.009

R. Riddel, "On ground motion intensity indices," Earthquake spectra, vol. 23, no. 1, pp. 147-173.2007. https://doi.org/10.1193/1.2424748 DOI: https://doi.org/10.1193/1.2424748

E. Bojórquez and I. Iervolino, "Spectral shape proxies and nonlinear structural response," Soil Dynamics and Earthquake Engineering, vol. 31, no. 7, pp. 996-1008.2011. https://doi.org/10.1016/j.soildyn.2011.03.006 DOI: https://doi.org/10.1016/j.soildyn.2011.03.006

P. Tothong and N. Luco, "Probabilistic seismic demand analysis using advanced ground motion intensity measures," Earthquake Engineering & Structural Dynamics, vol. 36, no. 13, pp. 1837-1860.2007. https://doi.org/10.1002/eqe.696 DOI: https://doi.org/10.1002/eqe.696

A. Lucchini, F. Mollaioli, and G. Monti, "Intensity measures for response prediction of a torsional building subjected to bi-directional earthquake ground motion," Bulletin of Earthquake Engineering, vol. 9, no. 5, pp. 1499-1518.2011. https://doi.org/10.1007/s10518-011-9258-2 DOI: https://doi.org/10.1007/s10518-011-9258-2

J. Donaire-Ávila, F. Mollaioli, A. Lucchini, and A. Benavent-Climent, "Intensity measures for the seismic response prediction of mid-rise buildings with hysteretic dampers," Engineering Structures, vol. 102, pp. 278-295.2015. https://doi.org/10.1016/j.engstruct.2015.08.023 DOI: https://doi.org/10.1016/j.engstruct.2015.08.023

P. Ge and Y. Zhou, "Investigation of efficiency of vector-valued intensity measures for displacement-sensitive tall buildings," Soil Dynamics and Earthquake Engineering, vol. 107, pp. 417-424.2018. DOI: https://doi.org/10.1016/j.soildyn.2017.12.018

https://doi.org/10.1016/j.soildyn.2017.12.018 DOI: https://doi.org/10.1016/j.soildyn.2017.12.018

J. Kiani, C. Camp, and S. Pezeshk, "Role of conditioning intensity measure in the influence of ground motion duration on the structural response," Soil Dynamics and Earthquake Engineering, vol. 104, pp. 408-417.2018. https://doi.org/10.1016/j.soildyn.2017.11.021 DOI: https://doi.org/10.1016/j.soildyn.2017.11.021

E. Bojórquez, I. Iervolino, A. Reyes-Salazar, and S. E. Ruiz, "Comparing vector-valued intensity measures for fragility analysis of steel frames in the case of narrow-band ground motions," Engineering Structures, vol. 45, pp. 472-480.2012. https://doi.org/10.1016/j.engstruct.2012.07.002 DOI: https://doi.org/10.1016/j.engstruct.2012.07.002

E. Bojórquez, R. Chávez, A. Reyes-Salazar, S. E. Ruiz, and J. Bojórquez, "A new ground motion intensity measure IB," Soil Dynamics and Earthquake Engineering, vol. 99, pp. 97-107.2017. https://doi.org/10.1016/j.soildyn.2017.05.011 DOI: https://doi.org/10.1016/j.soildyn.2017.05.011

M. Yakhchalian, A. Nicknam, and G. G. Amiri, "Optimal vector-valued intensity measure for seismic collapse assessment of structures," Earthquake Engineering and Engineering Vibration, vol. 14, no. 1, pp. 37-54.2015. https://doi.org/10.1007/s11803-015-0005-6 DOI: https://doi.org/10.1007/s11803-015-0005-6

C. Yang, L. Xie, A. Li, J. Jia, and D. Zeng, "Ground motion intensity measures for seismically isolated RC tall buildings," Soil Dynamics and Earthquake Engineering, vol. 125.2019. https://doi.org/10.1016/j.soildyn.2019.105727 DOI: https://doi.org/10.1016/j.soildyn.2019.105727

H. Rajabnejad, H. Hamidi, S. A. Naseri, and M. A. Abbaszadeh, "Effect of intensity measure on the response of a 3D-structure under different ground motion duration," International Journal of Engineering, vol. 34, no. 10.2021. https://doi.org/10.5829/ije.2021.34.10a.04 DOI: https://doi.org/10.5829/ije.2021.34.10a.04

Y. Zhou, P. Ge, J. Han, and Z. Lu, "Vector-valued intensity measures for incremental dynamic analysis," Soil Dynamics and Earthquake Engineering, vol. 100, pp. 380-388.2017. https://doi.org/10.1016/j.soildyn.2017.06.014 DOI: https://doi.org/10.1016/j.soildyn.2017.06.014

J. W. Baker and C. Allin Cornell, "Spectral shape, epsilon and record selection," Earthquake Engineering & Structural Dynamics, vol. 35, no. 9, pp. 1077-1095.2006. https://doi.org/10.1002/eqe.571 DOI: https://doi.org/10.1002/eqe.571

N. Buratti, "A comparison of the performances of varios ground-motion intensity measures," The 15th World Conference on Earthquake Engineering, vol. Lisbon, Portugal. 2012.

M. Grigoriu, "Do seismic intensity measures (IMs) measure up?," Probabilistic Engineering Mechanics, vol. 46, pp. 80-93.2016. DOI: https://doi.org/10.1016/j.probengmech.2016.09.002

https://doi.org/10.1016/j.probengmech.2016.09.002 DOI: https://doi.org/10.1016/j.probengmech.2016.09.002

J. Kiani and S. Pezeshk, "Sensitivity analysis of the seismic demands of RC moment resisting frames to different aspects of ground motions," Earthquake Engineering & Structural Dynamics, vol. 46, no. 15, pp. 2739-2755.2017. https://doi.org/10.1002/eqe.2928 DOI: https://doi.org/10.1002/eqe.2928

F. Mollaioli, A. Lucchini, Y. Cheng, and G. Monti, "Intensity measures for the seismic response prediction of base-isolated buildings," Bulletin of Earthquake Engineering, vol. 11, no. 5, pp. 1841-1866.2013. https://doi.org/10.1007/s10518-013-9431-x DOI: https://doi.org/10.1007/s10518-013-9431-x

M. Palanci and S. M. Senel, "Correlation of earthquake intensity measures and spectral displacement demands in building type structures," Soil Dynamics and Earthquake Engineering, vol. 121, pp. 306-326.2019. https://doi.org/10.1016/j.soildyn.2019.03.023 DOI: https://doi.org/10.1016/j.soildyn.2019.03.023

J. I. Torres, "Eficiencia de medidas de intensidad sísmica vectorial en la predicción de la respuesta de edificios de C/R," Culiacán, Sinaloa, México: Universidad Autónoma de Sinaloa, 2018, p. 102.

S. Tsantaki, C. Adam, and L. F. Ibarra, "Intensity measures that reduce collapse capacity dispersion of P-delta vulnerable simple systems," Bulletin of Earthquake Engineering, vol. 15, no. 3, pp. 1085-1109.2016. https://doi.org/10.1007/s10518-016-9994-4 DOI: https://doi.org/10.1007/s10518-016-9994-4

T.-T. Liu, D.-G. Lu, and X.-H. Yu, "Development of a compound intensity measure using partial least-squares regression and its statistical evaluation based on probabilistic seismic demand analysis," Soil Dynamics and Earthquake Engineering, vol. 125.2019. DOI: https://doi.org/10.1016/j.soildyn.2019.105725

https://doi.org/10.1016/j.soildyn.2019.105725 DOI: https://doi.org/10.1016/j.soildyn.2019.105725

J. W. Baker, "Probabilistic structural response assessment using vector-valued intensity measures," Earthquake Engineering & Structural Dynamics, vol. 36, no. 13, pp. 1861-1883.2007. https://doi.org/10.1002/eqe.700 DOI: https://doi.org/10.1002/eqe.700

I. Zentner, M. Gündel, and N. Bonfils, "Fragility analysis methods: Review of existing approaches and application," Nuclear Engineering and Design, vol. 323, pp. 245-258.2017. https://doi.org/10.1016/j.nucengdes.2016.12.021 DOI: https://doi.org/10.1016/j.nucengdes.2016.12.021

B. U. Gokkaya, J. W. Baker, and G. G. Deierlein, "Quantifying the impacts of modeling uncertainties on the seismic drift demands and collapse risk of buildings with implications on seismic design checks," Earthquake Engineering & Structural Dynamics, vol. 45, no. 10, pp. 1661-1683.2016. https://doi.org/10.1002/eqe.2740 DOI: https://doi.org/10.1002/eqe.2740

F. Jalayer, H. Ebrahimian, A. Miano, G. Manfredi, and H. Sezen, "Analytical fragility assessment using unscaled ground motion records," Earthquake Engineering & Structural Dynamics, vol. 46, no. 15, pp. 2639-2663.2017. https://doi.org/10.1002/eqe.2922 DOI: https://doi.org/10.1002/eqe.2922

C. Mai, K. Konakli, and B. Sudret, "Seismic fragility curves for structures using non-parametric representations," Frontiers of Structural and Civil Engineering, vol. 11, no. 2, pp. 169-186.2017. https://doi.org/10.1007/s11709-017-0385-y DOI: https://doi.org/10.1007/s11709-017-0385-y

W. Wen, C. Zhai, D. Ji, S. Li, and L. Xie, "Framework for the vulnerability assessment of structure under mainshock-aftershock sequences," Soil Dynamics and Earthquake Engineering, vol. 101, pp. 41-52.2017. https://doi.org/10.1016/j.soildyn.2017.07.002 DOI: https://doi.org/10.1016/j.soildyn.2017.07.002

F. Hosseinpour and A. E. Abdelnaby, "Fragility curves for RC frames under multiple earthquakes," Soil Dynamics and Earthquake Engineering, vol. 98, pp. 222-234.2017. https://doi.org/10.1016/j.soildyn.2017.04.013 DOI: https://doi.org/10.1016/j.soildyn.2017.04.013

S. T. Karapetrou, S. D. Fotopoulou, and K. D. Pitilakis, "Seismic Vulnerability of RC Buildings under the Effect of Aging," Procedia Environmental Sciences, vol. 38, pp. 461-468.2017. https://doi.org/10.1016/j.proenv.2017.03.137 DOI: https://doi.org/10.1016/j.proenv.2017.03.137

M. M. Kassem, F. Mohamed Nazri, and E. Noroozinejad Farsangi, "Development of seismic vulnerability index methodology for reinforced concrete buildings based on nonlinear parametric analyses," MethodsX, vol. 6, pp. 199-211.2019. https://doi.org/10.1016/j.mex.2019.01.006 DOI: https://doi.org/10.1016/j.mex.2019.01.006

P. Olteanu, V. Coliba, R. Vacareanu, F. Pavel, and D. Ciuiu, "Analytical Seismic Fragility Functions for Dual RC Structures in Bucharest," (Springer Natural Hazards, The 1940 Vrancea Earthquake. Issues, Insights and Lessons Learnt, 2016, pp. 463-479. DOI: https://doi.org/10.1007/978-3-319-29844-3_33

https://doi.org/10.1007/978-3-319-29844-3_33 DOI: https://doi.org/10.1007/978-3-319-29844-3_33

J. Pejovic and S. Jankovic, "Seismic fragility assessment for reinforced concrete high-rise buildings in Southern Euro-Mediterranean zone," Bulletin of Earthquake Engineering, vol. 14, no. 1, pp. 185-212.2015. https://doi.org/10.1007/s10518-015-9812-4 DOI: https://doi.org/10.1007/s10518-015-9812-4

M. Zain, N. Anwar, F. A. Najam, and T. Mehmood, "Seismic Fragility Assessment of Reinforced Concrete High-Rise Buildings Using the Uncoupled Modal Response History Analysis (UMRHA)," (Geotechnical, Geological and Earthquake Engineering, Proceedings of the International Conference on Earthquake Engineering and Structural Dynamics, 2019, pp. 201-218. https://doi.org/10.1007/978-3-319-78187-7_16 DOI: https://doi.org/10.1007/978-3-319-78187-7_16

M. Amiri and M. Yakhchalian, "Performance of intensity measures for seismic collapse assessment of structures with vertical mass irregularity," Structures, vol. 24, pp. 728-741.2020. https://doi.org/10.1016/j.istruc.2020.01.038 DOI: https://doi.org/10.1016/j.istruc.2020.01.038

RCDMX, "Normas Técnicas Complementarias para Diseño por Sismo," Gaceta Oficial del Distrito Federal, Décima cuarta época, Tomo II, No. 103-BIS, 2017.

D. Vamvatsikos and C. A. Cornell, "Incremental dynamic analysis," Earthquake Engineering & Structural Dynamics, vol. 31, no. 3, pp. 491-514.2002. https://doi.org/10.1002/eqe.141 DOI: https://doi.org/10.1002/eqe.141

Regresión logística simple (izquierda) para NpSa con Sa fija y multinomial (derecha) para el vector  <Sa, NpSa>.

Publicado

2022-04-29

Cómo citar

Zavala Gutiérrez, N., Bojórquez Mora, E., Barraza Guerrero, M. A., Bojórquez Mora, J. ., Villela y Mendoza, A., Torres Peñuelas, J. I., Campos Gaytán, J. R., & Sánchez Vergara, R. (2022). Fragilidad sísmica de un edificio de concreto reforzado usando medidas de intensidad sísmica vectorial basadas en la forma espectral. Revista De Ciencias Tecnológicas, 5(2), e220. https://doi.org/10.37636/recit.v5n2e220

Número

Sección

Artículos de Investigación

Categorías

Artículos más leídos del mismo autor/a