Life cycle cost comparison of reinforced concrete buildings locate in different types of soils in Mexico City
DOI:
https://doi.org/10.37636/recit.v6n4e276Keywords:
Reinforced concrete buildings, Seismic design, Structural reliability, Life cycle costsAbstract
Reinforced concrete buildings subjected to seismic events may present different damages even though they have similar characteristics when designed with the regulatory seismic load combination. This results in higher costs and inconsistent structural reliability over the life cycle of the buildings. This work focuses on comparing the life cycle costs of reinforced concrete buildings of various levels located on soil with period Ts=0.75s and Ts=2.0s in Mexico City. For this purpose, a set of seismic load combinations proposed for the design of the buildings were used. The capacity of the designs was evaluated by incremental dynamic analysis and the structural reliability was examined by structural demand hazard curves. In addition, simulations of seismic demands were performed to estimate the damage that could occur during the life cycle of the buildings. Finally, initial and total damage costs were obtained for all the buildings analyzed. The results showed that some proposed load combinations provided cost savings while improving the structural performance of the buildings over time. These findings could be valuable to the construction industry, as they offer a clearer picture of how to optimize the design and seismic resistance of buildings.
Downloads
References
W. C. Santiago, H. M. Kroetz, S. H. Santos, F. R. Stucchi, and A. T. Beck, "Reliability-based calibration of Main Brazilian structural design codes," Latin American Journal of Solids and Structures, vol. 17, no. 1, 2020. https://doi.org/10.1590/1679-78255754 DOI: https://doi.org/10.1590/1679-78255754
R. Fahrni, G. De Sanctis, and A. Frangi, "Comparison of reliability- and design-based code calibrations," Structural Safety, vol. 88, p. 102005, 2021. https://doi.org/10.1016/j.strusafe.2020.102005 DOI: https://doi.org/10.1016/j.strusafe.2020.102005
A. Slobbe, Á. Rózsás, and Y. Yang, "Reliability‐based calibration of design code formulas: Application to shear resistance formulas for reinforced concrete members without shear reinforcement," Structural Concrete, vol. 24, no. 2, pp. 2979-3001, 2022. https://doi.org/10.1002/suco.202200583 DOI: https://doi.org/10.1002/suco.202200583
J. Köhler and M. Baravalle, "Risk-based decision making and the calibration of structural design codes - prospects and challenges," Civil Engineering and Environmental Systems, vol. 36, no. 1, pp. 55-72, 2019. https://doi.org/10.1080/10286608.2019.1615477 DOI: https://doi.org/10.1080/10286608.2019.1615477
M. Safari, S. H. Ghasemi, and S. A. Haj Seiyed Taghia, "Target reliability analysis of bridge piers concerning the earthquake extreme event limit state," Engineering Structures, vol. 245, p. 112910, 2021. https://doi.org/10.1016/j.engstruct.2021.112910 DOI: https://doi.org/10.1016/j.engstruct.2021.112910
P. Franchin and F. Noto, "Reliability‐based partial factors for seismic design and assessment consistent with second‐generation eurocode 8," Earthquake Engineering & Structural Dynamics, pp. 1-22, 2023. https://doi.org/10.1002/eqe.3840 DOI: https://doi.org/10.1002/eqe.3840
F. Colangelo, R. Giannini, and P. E. Pinto, "Seismic reliability analysis of reinforced concrete structures with stochastic properties," Structural Safety, vol. 18, no. 2-3, pp. 151-168, 1996. https://doi.org/10.1016/0167-4730(96)00008-2 DOI: https://doi.org/10.1016/0167-4730(96)00008-2
B. R. Ellingwood, "Probability-based codified design for earthquakes," Engineering Structures, vol. 16, no. 7, pp. 498-506, 1994.
https://doi.org/10.1016/0141-0296(94)90086-8 DOI: https://doi.org/10.1016/0141-0296(94)90086-8
J. D. Sørensen, I. B. Kroon, and M. H. Faber, "Optimal Reliability-based code calibration," Structural Safety, vol. 15, no. 3, pp. 197-208, 1994. https://doi.org/10.1016/0167-4730(94)90040-X DOI: https://doi.org/10.1016/0167-4730(94)90040-X
Y. K. Wen, "Reliability and performance-based design," Structural Safety, vol. 23, no. 4, pp. 407-428, 2001. https://doi.org/10.1016/S0167-4730(02)00011-5 DOI: https://doi.org/10.1016/S0167-4730(02)00011-5
S. Shekhar, J. Ghosh, and J. E. Padgett, "Seismic life-cycle cost analysis of ageing highway bridges under chloride exposure conditions: Modelling and recommendations," Structure and Infrastructure Engineering, vol. 14, no. 7, pp. 941-966, 2018.
https://doi.org/10.1080/15732479.2018.1437639 DOI: https://doi.org/10.1080/15732479.2018.1437639
C. Ch. Mitropoulou, N. D. Lagaros, and M. Papadrakakis, "Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions," Reliability Engineering & System Safety, vol. 96, no. 10, pp. 1311-1331, 2011.
https://doi.org/10.1016/j.ress.2011.04.002 DOI: https://doi.org/10.1016/j.ress.2011.04.002
P. Castaldo, B. Palazzo, and P. Della Vecchia, "Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees," Engineering Structures, vol. 125, pp. 349-363, 2016. https://doi.org/10.1016/j.engstruct.2016.06.056 DOI: https://doi.org/10.1016/j.engstruct.2016.06.056
S. Liang, H. Gu, T. Bilek, and R. Bergman, "Life-cycle cost analysis of a mass-timber building: Methodology and hypothetical case study," US Department of Agriculture, Forest Service, Forest Products Laboratory: 1-11, 2019. https://doi.org/10.2737/FPL-RP-702. DOI: https://doi.org/10.2737/FPL-RP-702
P. Asadi and I. Hajirasouliha, "A practical methodology for optimum seismic design of RC frames for minimum damage and life-cycle cost," Engineering Structures, vol. 202, p. 109896, 2020. doi:10.1016/j.engstruct.2019.109896 https://doi.org/10.1016/j.engstruct.2019.109896 DOI: https://doi.org/10.1016/j.engstruct.2019.109896
M. Noureldin and J. Kim, "Parameterized seismic life-cycle cost evaluation method for building structures," Structure and Infrastructure Engineering, vol. 17, no. 3, pp. 425-439, 2020. https://doi.org/10.1080/15732479.2020.1759656 DOI: https://doi.org/10.1080/15732479.2020.1759656
N. D. Reddy Chukka, L. Natrayan, and W. D. Mammo, "Seismic Fragility and life cycle cost analysis of reinforced concrete structures with a hybrid damper," Advances in Civil Engineering, vol. 2021, pp. 1-17, 2021. https://doi.org/10.1155/2021/4195161 DOI: https://doi.org/10.1155/2021/4195161
H. Mirzaeefard, M. Mirtaheri, and M. A. Hariri-Ardebili, "Life-cycle cost analysis of pile-supported wharves under multi-hazard condition: Aging and shaking," Structure and Infrastructure Engineering, vol. 19, no. 2, pp. 269-289, 2021.
https://doi.org/10.1080/15732479.2021.1940216 DOI: https://doi.org/10.1080/15732479.2021.1940216
M. D. Pandey and J. A. M. van der Weide, "Stochastic renewal process models for estimation of damage cost over the life-cycle of a structure," Structural Safety, vol. 67, pp. 27-38, 2017. https://doi.org/10.1016/j.strusafe.2017.03.002 DOI: https://doi.org/10.1016/j.strusafe.2017.03.002
U. Vitiello, D. Asprone, M. Di Ludovico, and A. Prota, "Life-cycle cost optimization of the seismic retrofit of existing RC Structures," Bulletin of Earthquake Engineering, vol. 15, no. 5, pp. 2245-2271, 2016. https://doi.org/10.1007/s10518-016-0046-x DOI: https://doi.org/10.1007/s10518-016-0046-x
O. El-Khoury, A. Shafieezadeh, and E. Fereshtehnejad, "A risk-based life cycle cost strategy for optimal design and evaluation of Control Methods for nonlinear structures," Earthquake Engineering & Structural Dynamics, vol. 47, no. 11, pp. 2297-2314, 2018.
https://doi.org/10.1002/eqe.3069 DOI: https://doi.org/10.1002/eqe.3069
G. Barone and D. M. Frangopol, "Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost," Structural Safety, vol. 48, pp. 40-50, https://doi.org/10.1016/j.strusafe.2014.02.002 DOI: https://doi.org/10.1016/j.strusafe.2014.02.002
M. Torti, I. Venanzi, S. Laflamme, and F. Ubertini, "Life-cycle management cost analysis of Transportation Bridges equipped with Seismic Structural Health Monitoring Systems," Structural Health Monitoring, vol. 21, no. 1, pp. 100-117, 2021. https://doi.org/10.1177/1475921721996624 DOI: https://doi.org/10.1177/1475921721996624
J. Bojórquez, S. E. Ruiz, B. Ellingwood, A. Reyes-Salazar, and E. Bojórquez, "Reliability-based optimal load factors for seismic design of buildings," Engineering Structures, vol. 151, pp. 527-539, 2017. https://doi.org/10.1016/j.engstruct.2017.08.046 DOI: https://doi.org/10.1016/j.engstruct.2017.08.046
M. A. Orellana, S. E. Ruiz, J. Bojórquez, A. Reyes-Salazar, and E. Bojórquez, "Optimal load factors for earthquake-resistant design of buildings located at different types of soils," Journal of Building Engineering, vol. 34, p. 102026, 2021. https://doi.org/10.1016/j.jobe.2020.102026 DOI: https://doi.org/10.1016/j.jobe.2020.102026
H. E. Reyes et al., "Development an artificial neural network model for estimating cost of R/C building by using life-cycle cost function: Case study of Mexico City," Advances in Civil Engineering, vol. 2022, pp. 1-15, 2022. https://doi.org/10.1155/2022/7418230 DOI: https://doi.org/10.1155/2022/7418230
Instituto para la seguridad de las construcciones en la Ciudad de México, “Normas Técnicas complementarias para Diseño y Construcción de Estructuras de Concreto”, Gaceta Oficial de la Ciudad de México, México, 2021.
Instituto para la seguridad de las construcciones en la Ciudad de México, “Normas Técnicas complementarias para Diseño por Sismo”, Gaceta Oficial de la Ciudad de México, México. 2020. https://www.isc.cdmx.gob.mx/directores-res/cursos-de-actualizacion-2022/normas-tecnicas-complementarias-2023
Instituto para la seguridad de las construcciones en la Ciudad de México, “Normas Técnicas complementarias sobre Criterios y Acciones para el Diseño de Edificaciones”, Gaceta Oficial de la Ciudad de México, México, 2017.
Instituto de ingeniería, Universidad Nacional Autónoma de México, "Base de Datos de registros acelerogrficos de la raii-UNAM,", https://aplicaciones.iingen.unam.mx/AcelerogramasRSM/RedAcelerografica.aspx.
Centro de Instrumentación y Registro Sísmico, A. C, "Red Acelerográfica y Sistema de Alerta Sísmica de la ciudad de méxico," CDMX, https://www.isc.cdmx.gob.mx/revisiones/red-acelerografica-y-sistema-de-alerta-sismica-de-la-ciudad-de-mexico.
A.J. Carr, Volume 3: User Manual for the 3-dimensional Version, ruaumoko3D, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 2007.
T. Takeda, M. A. Sozen, and N. N. Nielsen, "Reinforced concrete response to simulated earthquakes," Journal of the Structural Division, vol. 96, no. 12, pp. 2557-2573, 1970. https://doi.org/10.1061/JSDEAG.0002765 DOI: https://doi.org/10.1061/JSDEAG.0002765
D. Vamvatsikos and C. A. Cornell, "Incremental dynamic analysis," Earthquake Engineering & Structural Dynamics, vol. 31, no. 3, pp. 491-514, 2002. doi:10.1002/eqe.141 https://doi.org/10.1002/eqe.141 DOI: https://doi.org/10.1002/eqe.141
Federal Emergency Management Agency, “FEMA-356: Next-generation performance based seismic design guidelines”, program plan for new and existing buildings. Washington DC. 2006. https://www.nehrp.gov/pdf/fema445.pdf
J. Kohns, L. Stempniewski, and A. Stark, "Fragility functions for reinforced concrete structures based on multiscale approach for earthquake damage criteria," Buildings, vol. 12, no. 8, p. 1253, 2022. https://doi.org/10.3390/buildings12081253 DOI: https://doi.org/10.3390/buildings12081253
R. Folić and M. Čokić, "Fragility and vulnerability analysis of an RC building with the application of nonlinear analysis," Buildings, vol. 11, no. 9, p. 390, 2021. https://doi.org/10.3390/buildings11090390 DOI: https://doi.org/10.3390/buildings11090390
C. A. Cornell, "Engineering seismic risk analysis," Bulletin of the Seismological Society of America, vol. 58, no. 5, pp. 1583-1606, 1968.
https://doi.org/10.1785/BSSA0580051583 DOI: https://doi.org/10.1785/BSSA0580051583
R. Y. Rubinstein and D. P. Kroese, "Simulation and the Monte Carlo method," Wiley Series in Probability and Statistics, 2007. https://doi.org/10.1002/9780470230381 DOI: https://doi.org/10.1002/9780470230381
Y. Park, A. H. ‐S. Ang, and Y. K. Wen, "Seismic damage analysis of reinforced concrete buildings," Journal of Structural Engineering, vol. 111, no. 4, pp. 740-757, 1985. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740) DOI: https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740)
D. Tolentino and S. E. Ruiz, "Time intervals for maintenance of offshore structures based on multiobjective optimization," Mathematical Problems in Engineering, vol. 2013, pp. 1-15, 2013. https://doi.org/10.1155/2013/125856 DOI: https://doi.org/10.1155/2013/125856
D. E. De Leon, "Integrating socioeconomics in the development of criteria for optimal seismic design of R/C buildings", PhD thesis, University of California, Irvine, USA, 1996.
A. Surahman and K. B. Rojiani, "Reliability based optimum design of concrete frames," Journal of Structural Engineering, vol. 109, no. 3, pp. 741-757, 1983. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:3(741) DOI: https://doi.org/10.1061/(ASCE)0733-9445(1983)109:3(741)
T. R. Miller, "Variations between countries in values of statistical life" Journal of transport economics and policy, p. 169-188, 2000. http://www.jstor.org/stable/20053838.
W. K. Viscusi and J. Aldy, The value of a statistical life: A critical review of market estimates throughout the world, vol. 27, no 1, p. 5-76, 2003. https://doi.org/10.3386/w9487 DOI: https://doi.org/10.3386/w9487
W. K. Viscusi and E. P. Gentry, "The value of a statistical life for transportation regulations: A TEST OF THE BENEFITS transfer methodology," SSRN Electronic Journal, vol. 51, no 1, p. 53-77, 2014. https://doi.org/10.2139/ssrn.2460837 DOI: https://doi.org/10.2139/ssrn.2460837
M A Orellana, S E Ruiz, y J. Bojórquez, "Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings". International Journal of Civil and Environmental Engineering, vol. 11, no 6, p. 724-728, 2017, https://doi.org/10.5281/zenodo.1130669
Instituto de Ingeniería UNAM, "Evaluación de los efectos de los sismos de septiembre de 1985 en los edificios de la CDMX”. Universidad Nacional Autónoma de México, 1985.
M. Aritake, et al., Report on the Investigation of the Earthquake in Mexico; September 19 1985. Tokyo Metropolitan Government, Tokyo, 1986.
Instituto Nacional de Estadística y Geografía (INEGI), "Encuesta nacional de ingresos y gastos de los hogares," Ingresos y Gastos de los Hogares, https://www.inegi.org.mx/temas/ingresoshog/2020.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Henry Emmanuel Reyes Heredia, Juan Bojórquez Mora, Edén Bojórquez Mora, Manuel Antonio Barraza Guerrero, Herían Alberto Leyva Madrigal
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).