Sincronización maestro-esclavo en los osciladores Rayleigh y Duffing mediante acoplamientos elásticos y disipativos

Autores/as

  • Ulises Uriostegui-Legorreta Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N, C.P. 58060, Morelia, Michoacán, México https://orcid.org/0000-0001-9905-6060
  • Eduardo Salvador Tututi-Hernández Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N, C.P. 58060, Morelia, Michoacán, México https://orcid.org/0000-0002-0126-6615

DOI:

https://doi.org/10.37636/recit.v5n1e214

Palabras clave:

Dinámica no lineal, Control del caos, Sincronización

Resumen

En este trabajo se estudia una configuración maestro-esclavo para obtener sincronización entre los osciladores Rayleigh y Duffing. Para esta configuración, analizamos el sistema cuando se utiliza el acoplamiento disipativo y uno que combina los acoplamientos elástico y disipativo. Analizamos los parámetros de acoplamiento para encontrar el rango donde se logra la sincronización entre los osciladores. Encontramos sincronización en los osciladores para valores grandes del parámetro de acoplamiento. Nuestros hallazgos numéricos muestran que para el acoplamiento disipativo existe una sincronización parcial mientras que para los demás existe una sincronización completa.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, (1990) 821. https://doi.org/10.1103/PhysRevLett.64.821 DOI: https://doi.org/10.1103/PhysRevLett.64.821

I. Pastor-Diaz and A. López-Fraguas, Dynamics of two coupled van der Pol oscillators, Phys. Rev. E 52, (1995) 1480. https://doi.org/10.1103/PhysRevE.52.1480 DOI: https://doi.org/10.1103/PhysRevE.52.1480

C. Reick and E. Mosekilde, Emergence of quasiperiodicity in symmetrically coupled, identical period-doubling systems, Phys. Rev. E52, (1995)1418. https://doi.org/10.1103/PhysRevE.52.1418 DOI: https://doi.org/10.1103/PhysRevE.52.1418

M. Z. Ding and W. H. Yang, and H. J. Zhang, Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos, Phys. Rev. E 54, (1995) 2489. https://doi.org/10.1103/PhysRevE.54.2489 DOI: https://doi.org/10.1103/PhysRevE.54.2489

H-W. Yin and J-H. Dai, Phase effect of two coupled periodically driven Duffing oscillators, Phys. Rev. E 58, (1998) 5683. https://doi.org/10.1103/PhysRevE.58.5683 DOI: https://doi.org/10.1103/PhysRevE.58.5683

K-J. Lee, Y. Kwak and T-K. Lim, Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators, Phys. Rev. Lett. 81, (1998) 321. https://doi.org/10.1103/PhysRevLett.81.321 DOI: https://doi.org/10.1103/PhysRevLett.81.321

L.O. Chua, M. Itoh, L. Kocarev and K. Eckert, Chaos synchronization in Chua circuit, J. Circuits, Systems and Computers 3, (1993) 93. https://doi.org/10.1142/S0218126693000071 DOI: https://doi.org/10.1142/S0218126693000071

E.D. Dongmo, K.S. Ojo, P. Woafo and A.N. Njah, Difference Synchronization of Identical and Nonidentical Chaotic and Hyperchaotic Systems of Different Orders Using Active Backstepping Design, ASME. J. Comput. Nonlinear Dynam. 13, (2018) 051005. https://doi.org/10.1115/1.4039626 DOI: https://doi.org/10.1115/1.4039626

D. López-Mancilla, G. López-Cahuich, C. Posadas-Castillo, C.E. Castañeda, J.H. García-López, J.L. Vázquez-Gutiérrez and E. Tlelo-Cuautle, Synchronization of complex networks of identical and nonidentical chaotic systems via model-matching control, PLoS ONE, 14, (2019) 0216349. https://doi.org/10.1371/journal.pone.0216349 DOI: https://doi.org/10.1371/journal.pone.0216349

C. Huang and J. Cao, Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system, Physica A: Statistical Mechanics and its Applications, 473, (2017) 262. https://doi.org/10.1016/j.physa.2017.01.009 DOI: https://doi.org/10.1016/j.physa.2017.01.009

Q. Ye, Z. Jiang and T. Chen, Adaptive Feedback Control for Synchronization of Chaotic Neural Systems with Parameter Mismatches, Complexity, Vol. 2018, (2018) 5431987. https://doi.org/10.1155/2018/5431987 DOI: https://doi.org/10.1155/2018/5431987

J.A. Chekan, M.A. Nojoumian, K. Merat and H. Salarieh, Chaos control in lateral oscillations of spinning disk via linear optimal control of discrete systems, J. Vib. Control, 23, (2017) 103. https://doi.org/10.1177/1077546315575248 DOI: https://doi.org/10.1177/1077546315575248

M.C. Pai, Sliding Mode Control for Discrete-Time Chaotic Systems with Input Nonlinearity, ASME: J. Dyn. Sys. Meas. Control, 142, (2020) 101003. https://doi.org/10.1115/1.4047218 DOI: https://doi.org/10.1115/1.4047218

J. Yan and C. Li, Generalized projective synchronization of a unified chaotic system, Chaos, Solitons and Fractals, 26, (2005) 1119. https://doi.org/10.1016/j.chaos.2005.02.034 DOI: https://doi.org/10.1016/j.chaos.2005.02.034

A.Razminia and B.Dumitru, Complete synchronization of commensurate fractional order chaotic systems using sliding mode control, Mechatronics, 23, (2013) 873. https://doi.org/10.1016/j.mechatronics.2013.02.004 DOI: https://doi.org/10.1016/j.mechatronics.2013.02.004

A. Ouannas, A.T. Azar and S. Vaidyanathan, New hybrid synchronization schemes based on coexistence of various types of synchronization between master-slave hyperchaotic systems, Int. J. Comput. Appl. Technol, 55, (2017) 112. https://doi.org/10.1504/IJCAT.2017.10003542 DOI: https://doi.org/10.1504/IJCAT.2017.082868

E. Campos, J. Urias and N.F. Rulkov, Multimodal synchronization of chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14, (2004) 48-54. https://doi.org/10.1063/1.1624651 DOI: https://doi.org/10.1063/1.1624651

J.S. González Salas, E. Campos Cantón, F.C. Ordaz Salazar and I. Campos Cantón, Forced synchronization of a self-sustained chaotic oscillator, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18, (2008) 023136. https://doi.org/10.1063/1.2947661 DOI: https://doi.org/10.1063/1.2947661

A. Anzo-Hernández, E. Campos-Cantón and M. Nicol, Itinerary synchronization between PWL systems coupled with unidirectional links, Commun Nonlinear Sci NumerSimulat, 70, (2019) 102. https://doi.org/10.1016/j.cnsns.2018.10.020 DOI: https://doi.org/10.1016/j.cnsns.2018.10.020

A. Khan and Shikha, Hybrid function projective synchronization of chaotic systems via adaptive control, Int. J. Dynam. Control, 5, (2017) 1114. https://doi.org/10.1007/s40435-016-0258-6 DOI: https://doi.org/10.1007/s40435-016-0258-6

A.Karimov, A.Tutueva, T.Karimov, O.Druzhina and D.Butusov, Adaptive Generalized Synchronization between Circuit and Computer Implementations of the Rössler System, Appl. Sci. 2021, 11, 81. https://doi.org/10.3390/app11010081 DOI: https://doi.org/10.3390/app11010081

K. Murali and M. Lakshmanan, Transmission of signals by synchronization in a chaotic Van der Pol–Duffing oscillator, Phys. Rev. E 48, (1993) R1624, https://doi.org/10.1103/PhysRevE.48.R1624 DOI: https://doi.org/10.1103/PhysRevE.48.R1624

A.N. Njah, Synchronization via active control of parametrically and externally excited Φ6 Van der Pol and Duffing oscillators and application to secure communications, Journal of Vibration and Control 17, (2010) 504, https://doi.org/10.1177/1077546309357024 DOI: https://doi.org/10.1177/1077546309357024

L. Lu, F. Zhang and C. Han, Synchronization transmission of the target signal in the circuit network based on coupling technique, Physica A: Statistical Mechanics and its Applications 535, (2019) 122412, https://doi.org/10.1016/j.physa.2019.122412 DOI: https://doi.org/10.1016/j.physa.2019.122412

M.S. Dutra, A.C. de Pina Filho and V.F. Romano, Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol, Biol. Cybern 88, (2003) 292, https://doi.org/10.1007/s00422-002-0380-8 DOI: https://doi.org/10.1007/s00422-002-0380-8

R.F. Jasni and A.A. Shafie, Van Der Pol Central Pattern Generator (VDP-CPG) Model for Quadruped Robot, IRAM 2012. Communications in Computer and Information Science 330, (2012) 175, https://doi.org/10.1007/978-3-642-35197-6_18 DOI: https://doi.org/10.1007/978-3-642-35197-6_18

S. Mall and S. Chakraverty, Hermite Functional Link Neural Network for Solving the Van der Pol–Duffing Oscillator Equation, Neural Computation 28, (2016) 1598, https://doi.org/10.1162/NECO_a_00858 DOI: https://doi.org/10.1162/NECO_a_00858

S.C. Sarkhosh, S.C. Shahriar and P.P. See, Application of Chebyshev neural network to solve Van der Pol equations, International Journal of Basic and Applied Sciences 10, (2021) 19, https://doi.org/10.14419/ijbas.v10i1.31431

J.C. Chedjou, K. Kyamakya, I. Moussa, H.P. Kuchenbecker, W. Mathis, Behavior of a self-sustained electromechanical transducer and routes to chaos, J. Vib. Acoust. 128, (2006) 282. https://doi.org/10.1115/1.2172255 DOI: https://doi.org/10.1115/1.2172255

J.C. Chedjou, H.B. Fotsin, P. Woafo, and S. Domngang, Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator, IEEE Trans. Circuits Syst.I, Fundam. Theory Appl. 48, (2001) 748. https://doi.org/10.1109/81.9281575 DOI: https://doi.org/10.1109/81.928157

A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Coupled van der Pol-Duffing oscillators: phase dynamics and structure of synchronization tongues, Physica D 238, (2009) 1203. https://doi.org/10.1016/j.physd.2009.04.001 DOI: https://doi.org/10.1016/j.physd.2009.04.001

M.S. Siewe, S.B. Yamgoué, E.M. MoukamKakmeni, C. Tchawoua, Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory, Nonlinear Dyn. 62, (2010) 379. https://doi.org/10.1007/s11071-010-9725-3 DOI: https://doi.org/10.1007/s11071-010-9725-3

U.E. Vincent and A. Kenfack, Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillator, Phys. Scr. 77, (2008) 045005. https://doi.org/10.1088/0031-8949/77/04/045005 DOI: https://doi.org/10.1088/0031-8949/77/04/045005

U. Uriostegui, E.S. Tututi and G. Arroyo, A new scheme of coupling and synchronizing low-dimensional dynamical systems, Rev. Mex. Fis. 67, (2021) 334. https://doi.org/10.31349/RevMexFis.67.334 DOI: https://doi.org/10.31349/RevMexFis.67.334

J. Kengne, J.C. Chedjou, G. Kenne, K. Kyamakya and G.H. Kom, Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator, Nonlinear Dyn, 70, (2012) 2163. https://doi.org/10.1007/s11071-012-0607-8 DOI: https://doi.org/10.1007/s11071-012-0607-8

J. Kengne, F. Kenmogne and V. KamdoumTamba, Experiment on bifurcation and chaos in coupled anisochronous self-excited systems: Case of two coupled van der Pol-Duffing oscillators, Journal of Nonlinear Dynamics, 2014, (2014) 815783. https://doi.org/10.1155/2014/815783 DOI: https://doi.org/10.1155/2014/815783

U. Uriostegui and E.S. Tututi, Synchronization in the van der Pol-Duffing system via elastic and dissipative couplings, Rev. Mex. Fis. 68, (2022) 011402, pp.1–13. https://doi.org/10.31349/RevMexFis.68.011402

H. Zhang, D. Liu and Z. Wang, Controlling Chaos: Suppression, Synchronization and Chaotification, Springer, London, (2009). https://doi.org/10.1007/978-1-84882-523-9 DOI: https://doi.org/10.1007/978-1-84882-523-9

S. Boccaletti, J. Kurths, G. Osipov, DL. Valladares and CS. Zhou, The synchronization of chaotic systems, Physics Reports 366, (2002) 101. https://doi.org/10.1016/S0370-1573(02)00137-0 DOI: https://doi.org/10.1016/S0370-1573(02)00137-0

L. M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos, 25, (2015) 097611. https://doi.org/10.1063/1.4917383 DOI: https://doi.org/10.1063/1.4917383

T-P Chang, Chaotic motion in forced duffing system subject to linear and nonlinear damping, Mathematical Problems in Engineering, Vol. 2017, (2017) 3769870. https://doi.org/10.1155/2017/3769870 DOI: https://doi.org/10.1155/2017/3769870

M.S. Siewe, C. Tchawoua, and P. Woafo, Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator, Mechanics Research Communications, Vol. 37, (2010) 363. https://doi.org/10.1016/j.mechrescom.2010.04.001 DOI: https://doi.org/10.1016/j.mechrescom.2010.04.001

Y-Z. Wang, and F-M. Li, Dynamical properties of Duffing-van der Pol oscillator subject to both external and parametric excitations with time delayed feedback control, Journal of Vibration and Control, Vol. 21, (2015) 371. https://doi.org/10.1177/1077546313483160 DOI: https://doi.org/10.1177/1077546313483160

K. Ding, Master-Slave Synchronization of Chaotic Φ6 Duffing Oscillators by Linear State Error Feedback Control, Complexity Vol. 2019, (2019) 3637902. https://doi.org/10.1155/2019/3637902 DOI: https://doi.org/10.1155/2019/3637902

A. Buscarino, L. Fortuna, and L. Patane, Master-slave synchronization of hyperchaotic systems through a linear dynamic coupling, Phys. Rev. E 100, (2019) 032215. https://doi.org/10.1103/PhysRevE.100.032215 DOI: https://doi.org/10.1103/PhysRevE.100.032215

F. Aydogmus and E. Tosyali, Master–slave synchronization in a 4D dissipative nonlinear fermionic system, International Journal of Control Vol. 2020, (2020) 1. https://doi.org/10.1080/00207179.2020.1808244 DOI: https://doi.org/10.1080/00207179.2020.1808244

J.P. Ramirez, E. Garcia and J. Alvarez, Master-slave synchronization via dynamic control, Common Nonlinear Sci NumerSimulat, Vol. 80, (2020) 104977. https://doi.org/10.1016/j.cnsns.2019.104977 DOI: https://doi.org/10.1016/j.cnsns.2019.104977

Oscilador Rayleigh

Publicado

2022-02-16

Cómo citar

Uriostegui-Legorreta, U., & Tututi-Hernández, E. S. (2022). Sincronización maestro-esclavo en los osciladores Rayleigh y Duffing mediante acoplamientos elásticos y disipativos. Revista De Ciencias Tecnológicas, 5(1), 1–15. https://doi.org/10.37636/recit.v5n1e214

Número

Sección

Artículos de Investigación

Categorías