Characterization of a new design of temperature sensor based on plasmon resonance effect
DOI:
https://doi.org/10.37636/recit.v2398105Keywords:
Temperature sensor, Gold grating surface plasmon resonance, Macroscopic scale.Abstract
In this work a study of the effect from temperature on surface plasmon polariton (SPP) is proposed. On a macroscopic scale, as a consequence in the variation of temperature, materials show dilation or contraction. Thus, based on SPP effect, using the gold grating surface plasmon resonance configuration, a novel temperature sensor design is characterized.Downloads
References
M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, 1st ed. Dordrecht: Springer Netherlands, 2007. https://doi.org/10.1007/978-1-4020-4333-8. DOI: https://doi.org/10.1007/978-1-4020-4333-8
W. Knoll, "Interfaces and Thin Films as Seen by Bound Electromagnetic Waves," Annu. Rev. Phys. Chem., vol. 49, no. 1, pp. 569-638, Oct. 1998. https://doi.org/10.1146/annurev.physchem.49.1.569. DOI: https://doi.org/10.1146/annurev.physchem.49.1.569
M. Malmqvist, "Biospecific interaction analysis using biosensor technology," Nature, vol. 361, no. 6408, pp. 186-187, 1993. https://doi.org/10.1038/361186a0. DOI: https://doi.org/10.1038/361186a0
R. Narayanaswamy and O. S. Wolfbeis, Optical Sensors: Industrial Environmental and Diagnostic Applications. Springer Berlin Heidelberg, 2013. https://books.google.com.mx/books/about/Optical_Sensors.html?id=IHTfoQEACAAJ&redir_esc=y.
F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron., vol. 20, no. 3, pp. 633-642, 2004. https://doi.org/10.1016/j.bios.2004.03.014. DOI: https://doi.org/10.1016/j.bios.2004.03.014
R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett., vol. 67, no. 27, pp. 3796-3799, Dec. 1991. https://doi.org/10.1103/PhysRevLett.67.3796. DOI: https://doi.org/10.1103/PhysRevLett.67.3796
R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced Conversion of Silver Nanospheres to Nanoprisms," Science (80)., vol. 294, no. 5548, pp. 1901 LP - 1903, Nov. 2001. https://doi.org/10.1126/science.1066541. DOI: https://doi.org/10.1126/science.1066541
R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation," Nature, vol. 425, no. 6957, pp. 487-490, 2003. https://doi.org/10.1038/nature02020. DOI: https://doi.org/10.1038/nature02020
B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature, vol. 332, no. 6165, pp. 615-617, 1988. https://doi.org/10.1038/332615a0. DOI: https://doi.org/10.1038/332615a0
G. Flätgen, K. Krischer, B. Pettinger, K. Doblhofer, H. Junkes, and G. Ertl, "Two-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy," Science (80)., vol. 269, no. 5224, pp. 668 LP - 671, Aug. 1995. https://doi.org/10.1126/science.269.5224.668. DOI: https://doi.org/10.1126/science.269.5224.668
J. G. Gordon and S. Ernst, "Surface plasmons as a probe of the electrochemical interface," Surf. Sci., vol. 101, no. 1, pp. 499-506, 1980. https://doi.org/10.1016/0039-6028(80)90644-5. DOI: https://doi.org/10.1016/0039-6028(80)90644-5
B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, vol. 4, pp. 299-304, 1983. https://doi.org/10.1016/0250-6874(83)85036-7. DOI: https://doi.org/10.1016/0250-6874(83)85036-7
S. C. Schuster, R. V Swanson, L. A. Alex, R. B. Bourret, and M. I. Simon, "Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance," Nature, vol. 365, no. 6444, pp. 343-347, 1993. https://doi.org/10.1038/365343a0. DOI: https://doi.org/10.1038/365343a0
P. Schuck, "Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors," Curr. Opin. Biotechnol., vol. 8, no. 4, pp. 498-502, 1997. https://doi.org/10.1016/S0958-1669(97)80074-2. DOI: https://doi.org/10.1016/S0958-1669(97)80074-2
J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B Chem., vol. 54, no. 1, pp. 3-15, 1999. https://doi.org/10.1016/S0925-4005(98)00321-9. DOI: https://doi.org/10.1016/S0925-4005(98)00321-9
A. R. Mendelsohn and R. Brent, "Protein Interaction Methods-Toward an Endgame," Science (80)., vol. 284, no. 5422, pp. 1948 LP - 1950, Jun. 1999. https://doi.org/10.1126/science.284.5422.1948. DOI: https://doi.org/10.1126/science.284.5422.1948
R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, "Surface plasmon resonance analysis of dynamic biological interactions with biomaterials," Biomaterials, vol. 21, no. 18, pp. 1823-1835, 2000. https://doi.org/10.1016/S0142-9612(00)00077-6. DOI: https://doi.org/10.1016/S0142-9612(00)00077-6
J. Pendry, "Playing Tricks with Light," Science (80-. )., vol. 285, no. 5434, pp. 1687 LP - 1688, Sep. 1999. https://doi.org/10.1126/science.285.5434.1687. DOI: https://doi.org/10.1126/science.285.5434.1687
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization Model for the Plasmon Response of Complex Nanostructures," Science (80-. )., vol. 302, no. 5644, pp. 419 LP - 422, Oct. 2003. https://doi.org/10.1126/science.1089171. DOI: https://doi.org/10.1126/science.1089171
W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950, pp. 824-830, 2003. https://doi.org/10.1038/nature01937. DOI: https://doi.org/10.1038/nature01937
W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett., vol. 86, no. 18, p. 181108, Apr. 2005. https://doi.org/10.1063/1.1920419. DOI: https://doi.org/10.1063/1.1920419
J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528-539, 2003. https://doi.org/10.1007/s00216-003-2101-0. DOI: https://doi.org/10.1007/s00216-003-2101-0
J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: physics and applications," J. Phys. D. Appl. Phys., vol. 45, no. 11, p. 113001, 2012. https://doi.org/10.1088/0022-3727/45/11/113001. DOI: https://doi.org/10.1088/0022-3727/45/11/113001
K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris. Plasmonic films can easily be better: Rules and recipes, ACS Photonics 2, 326-333, 2015. https://doi.org/10.1021/ph5004237. DOI: https://doi.org/10.1021/ph5004237
S. Babar and J. H. Weaver. Optical constants of Cu, Ag, and Au revisited, Appl. Opt. 54, 477-481, 2015. https://doi.org/10.1364/AO.54.000477. DOI: https://doi.org/10.1364/AO.54.000477
F. Lemarchand, private communications (2013). Index determination is performed using method explained in: L. Gao, F. Lemarchand, and M. Lequime. Comparison of different dispersion models for single layer optical thin film index determination, Thin Solid Films 520, 501-509 (2011). https://doi.org/10.1016/j.tsf.2011.07.028. DOI: https://doi.org/10.1016/j.tsf.2011.07.028
R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke. Optical dielectric function of gold, Phys Rev. B 86, 235147, 2012. https://doi.org/10.1103/PhysRevB.86.235147. DOI: https://doi.org/10.1103/PhysRevB.86.235147
W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data38, 1013-1092, 2009. https://doi.org/10.1063/1.3243762. DOI: https://doi.org/10.1063/1.3243762
Published
How to Cite
License
Copyright (c) 2020 Miguel Angel Ponce Camacho, Mayra Alejandra Heredia Aguilar, Josué Aarón López Leyva, Casemiro Oliveira Leiva
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).