Caracterización de un nuevo diseño de sensor de temperatura basado en el efecto de resonancia de plasmones

Autores/as

  • Miguel Ángel Ponce Camacho CETYS Universidad, Calzada CETYS s/n, Col. Rivera, C. P. 21259 Mexicali, Baja California, México https://orcid.org/0000-0002-3320-1277
  • Mayra Alejandra Heredia Aguilar CETYS Universidad, Calzada CETYS s/n, Col. Rivera, C. P. 21259 Mexicali, Baja California, México
  • Josué Aarón López Leyva CETYS Universidad, Calzada CETYS s/n, Col. Rivera, C. P. 21259 Mexicali, Baja California, México https://orcid.org/0000-0002-3004-5686
  • Casemiro Oliveira Leiva Centro de Ciências Exatas e Naturais, Universida de Federal Rural do Semi-Árido, Brazil

DOI:

https://doi.org/10.37636/recit.v2398105

Palabras clave:

Sensor de temperatura, Superficie de rejilla de oro resonancia de plasmón, Escala macroscópica

Resumen

En este trabajo se propone un estudio del efecto de la temperatura sobre la superficie del plasmón polaritón (SPP). En una escala macroscópica, como consecuencia de la variación de temperatura, los materiales muestran dilatación o contracción. Por lo tanto, basado en el efecto SPP, utilizando la configuración de resonancia de plasmón de la superficie de rejilla dorada, se caracteriza un nuevo diseño de sensor de temperatura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, 1st ed. Dordrecht: Springer Netherlands, 2007. https://doi.org/10.1007/978-1-4020-4333-8. DOI: https://doi.org/10.1007/978-1-4020-4333-8

W. Knoll, "Interfaces and Thin Films as Seen by Bound Electromagnetic Waves," Annu. Rev. Phys. Chem., vol. 49, no. 1, pp. 569-638, Oct. 1998. https://doi.org/10.1146/annurev.physchem.49.1.569. DOI: https://doi.org/10.1146/annurev.physchem.49.1.569

M. Malmqvist, "Biospecific interaction analysis using biosensor technology," Nature, vol. 361, no. 6408, pp. 186-187, 1993. https://doi.org/10.1038/361186a0. DOI: https://doi.org/10.1038/361186a0

R. Narayanaswamy and O. S. Wolfbeis, Optical Sensors: Industrial Environmental and Diagnostic Applications. Springer Berlin Heidelberg, 2013. https://books.google.com.mx/books/about/Optical_Sensors.html?id=IHTfoQEACAAJ&redir_esc=y.

F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron., vol. 20, no. 3, pp. 633-642, 2004. https://doi.org/10.1016/j.bios.2004.03.014. DOI: https://doi.org/10.1016/j.bios.2004.03.014

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett., vol. 67, no. 27, pp. 3796-3799, Dec. 1991. https://doi.org/10.1103/PhysRevLett.67.3796. DOI: https://doi.org/10.1103/PhysRevLett.67.3796

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced Conversion of Silver Nanospheres to Nanoprisms," Science (80)., vol. 294, no. 5548, pp. 1901 LP - 1903, Nov. 2001. https://doi.org/10.1126/science.1066541. DOI: https://doi.org/10.1126/science.1066541

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation," Nature, vol. 425, no. 6957, pp. 487-490, 2003. https://doi.org/10.1038/nature02020. DOI: https://doi.org/10.1038/nature02020

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature, vol. 332, no. 6165, pp. 615-617, 1988. https://doi.org/10.1038/332615a0. DOI: https://doi.org/10.1038/332615a0

G. Flätgen, K. Krischer, B. Pettinger, K. Doblhofer, H. Junkes, and G. Ertl, "Two-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy," Science (80)., vol. 269, no. 5224, pp. 668 LP - 671, Aug. 1995. https://doi.org/10.1126/science.269.5224.668. DOI: https://doi.org/10.1126/science.269.5224.668

J. G. Gordon and S. Ernst, "Surface plasmons as a probe of the electrochemical interface," Surf. Sci., vol. 101, no. 1, pp. 499-506, 1980. https://doi.org/10.1016/0039-6028(80)90644-5. DOI: https://doi.org/10.1016/0039-6028(80)90644-5

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, vol. 4, pp. 299-304, 1983. https://doi.org/10.1016/0250-6874(83)85036-7. DOI: https://doi.org/10.1016/0250-6874(83)85036-7

S. C. Schuster, R. V Swanson, L. A. Alex, R. B. Bourret, and M. I. Simon, "Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance," Nature, vol. 365, no. 6444, pp. 343-347, 1993. https://doi.org/10.1038/365343a0. DOI: https://doi.org/10.1038/365343a0

P. Schuck, "Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors," Curr. Opin. Biotechnol., vol. 8, no. 4, pp. 498-502, 1997. https://doi.org/10.1016/S0958-1669(97)80074-2. DOI: https://doi.org/10.1016/S0958-1669(97)80074-2

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B Chem., vol. 54, no. 1, pp. 3-15, 1999. https://doi.org/10.1016/S0925-4005(98)00321-9. DOI: https://doi.org/10.1016/S0925-4005(98)00321-9

A. R. Mendelsohn and R. Brent, "Protein Interaction Methods-Toward an Endgame," Science (80)., vol. 284, no. 5422, pp. 1948 LP - 1950, Jun. 1999. https://doi.org/10.1126/science.284.5422.1948. DOI: https://doi.org/10.1126/science.284.5422.1948

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, "Surface plasmon resonance analysis of dynamic biological interactions with biomaterials," Biomaterials, vol. 21, no. 18, pp. 1823-1835, 2000. https://doi.org/10.1016/S0142-9612(00)00077-6. DOI: https://doi.org/10.1016/S0142-9612(00)00077-6

J. Pendry, "Playing Tricks with Light," Science (80-. )., vol. 285, no. 5434, pp. 1687 LP - 1688, Sep. 1999. https://doi.org/10.1126/science.285.5434.1687. DOI: https://doi.org/10.1126/science.285.5434.1687

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization Model for the Plasmon Response of Complex Nanostructures," Science (80-. )., vol. 302, no. 5644, pp. 419 LP - 422, Oct. 2003. https://doi.org/10.1126/science.1089171. DOI: https://doi.org/10.1126/science.1089171

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950, pp. 824-830, 2003. https://doi.org/10.1038/nature01937. DOI: https://doi.org/10.1038/nature01937

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett., vol. 86, no. 18, p. 181108, Apr. 2005. https://doi.org/10.1063/1.1920419. DOI: https://doi.org/10.1063/1.1920419

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528-539, 2003. https://doi.org/10.1007/s00216-003-2101-0. DOI: https://doi.org/10.1007/s00216-003-2101-0

J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: physics and applications," J. Phys. D. Appl. Phys., vol. 45, no. 11, p. 113001, 2012. https://doi.org/10.1088/0022-3727/45/11/113001. DOI: https://doi.org/10.1088/0022-3727/45/11/113001

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris. Plasmonic films can easily be better: Rules and recipes, ACS Photonics 2, 326-333, 2015. https://doi.org/10.1021/ph5004237. DOI: https://doi.org/10.1021/ph5004237

S. Babar and J. H. Weaver. Optical constants of Cu, Ag, and Au revisited, Appl. Opt. 54, 477-481, 2015. https://doi.org/10.1364/AO.54.000477. DOI: https://doi.org/10.1364/AO.54.000477

F. Lemarchand, private communications (2013). Index determination is performed using method explained in: L. Gao, F. Lemarchand, and M. Lequime. Comparison of different dispersion models for single layer optical thin film index determination, Thin Solid Films 520, 501-509 (2011). https://doi.org/10.1016/j.tsf.2011.07.028. DOI: https://doi.org/10.1016/j.tsf.2011.07.028

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke. Optical dielectric function of gold, Phys Rev. B 86, 235147, 2012. https://doi.org/10.1103/PhysRevB.86.235147. DOI: https://doi.org/10.1103/PhysRevB.86.235147

W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data38, 1013-1092, 2009. https://doi.org/10.1063/1.3243762. DOI: https://doi.org/10.1063/1.3243762

Esquema de trabajo del polarizador lineal.

Publicado

2019-09-20

Cómo citar

Ponce Camacho, M. Ángel, Heredia Aguilar, M. A., López Leyva, J. A., & Oliveira Leiva, C. (2019). Caracterización de un nuevo diseño de sensor de temperatura basado en el efecto de resonancia de plasmones. Revista De Ciencias Tecnológicas, 2(3), 98–105. https://doi.org/10.37636/recit.v2398105

Número

Sección

Artículos de Investigación

Categorías