Evaluación del efecto de la precarga de ensamble y la cantidad de hojas sobre la disipación pasiva de energía en un muelle

Autores/as

  • Víctor Iván Rodríguez Reyes Centro Nacional de Investigación y Desarrollo Tecnológico https://orcid.org/0000-0002-4984-025X
  • Dr. Dariusz Slawomir Szwedowicz Tecnológico Nacional de México / Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Interior Internado Palmira, CP. 62490, Cuernavaca, Morelos, México

DOI:

https://doi.org/10.37636/recit.v34181195

Palabras clave:

Diseño Mecánico y Manufactura, muelle de hojas, ballesta, disipación de energía por fricción

Resumen

En este trabajo se presenta la evaluación de la influencia de las precargas de ensamble y de la cantidad de hojas en el fenómeno de disipación de energía de un muelle a través de un estudio paramétrico. El estudio consistió en estimar la cantidad de energía disipada al variar el número de hojas del muelle y la precarga, a través del uso de abrazaderas, tanto de forma numérica como experimental. Mediante ensayos de compresión se observó el comportamiento del muelle mediante una relación fuerza-desplazamiento. Se obtuvo la energía de deformación y la disipación por fricción total mediante la integración de la curva de histéresis. Se realizó un modelado numérico con el paquete comercial de elementos finitos Abaqus en estado cuasi estático. Los resultados obtenidos demuestran que las precargas influyen en la disipación de energía del muelle, incrementándose mayormente cuando éstas se implementan con un mayor número de hojas, hasta 189%. Con estos resultados es posible proponer una configuración que permite disipar la mayor cantidad de energía de forma pasiva y, en consecuencia, mejorar el amortiguamiento del vehículo en referencia al muelle comercial.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. G. Piersol y T. L. Paez, Harris’ shock and vibration handbook. McGraw-Hill, 2010.

J. C. Dixon, The Shock Absorber Handbook. Chichester, UK: John Wiley & Sons, Ltd, 2007. DOI: https://doi.org/10.1002/9780470516430

J. R. Matienzo y L. O. Pereiro, “Modelo de un muelle de ballestas considerando la fricción entre hojas”, Ing. Mecánica, vol. 9, núm. 1, pp. 15–28, 2006.

Young-Jin Yum, “Frictional behavior of automotive leaf spring”, en Proceedings KORUS 2000. The 4th Korea-Russia International Symposium On Science and Technology, 2000, vol. 3, pp. 5–10, doi: 10.1109/KORUS.2000.866051. DOI: https://doi.org/10.1109/KORUS.2000.866051

A. González Rodríguez, J. M. Chacón, A. Donoso, y A. G. González Rodríguez, “Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation”, Mech. Mach. Theory, vol. 46, núm. 12, pp. 1970–1979, dic. 2011, doi: 10.1016/j.mechmachtheory.2011.07.002. DOI: https://doi.org/10.1016/j.mechmachtheory.2011.07.002

S. Karditsas, G. Savaidis, y M. Malikoutsakis, “Advanced leaf spring design and analysis with respect to vehicle kinematics and durability”, Int. J. Struct. Integr., vol. 6, núm. 2, pp. 243–258, abr. 2015, doi: 10.1108/IJSI-11-2013-0044. DOI: https://doi.org/10.1108/IJSI-11-2013-0044

Z. Xu, L. Hong, X. L. Wang, y C. S. Ding, “Study on the Influence of the Shape of Leaf Spring on the Stress and the Kinematic Characteristics”, J. Eng. Res. Appl., vol. 8, núm. 6, pp. 13–21, 2018, doi: 10.9790/9622-0806031321.

M. Malikoutsakis, G. Savaidis, A. Savaidis, C. Ertelt, y F. Schwaiger, “Design, analysis and multi-disciplinary optimization of high-performance front leaf springs”, Theor. Appl. Fract. Mech., vol. 83, pp. 42–50, jun. 2016, doi: 10.1016/j.tafmec.2016.01.008. DOI: https://doi.org/10.1016/j.tafmec.2016.01.008

M. M. Shokrieh y D. Rezaei, “Analysis and optimization of a composite leaf spring”, Compos. Struct., vol. 60, núm. 3, pp. 317–325, 2003, doi: https://doi.org/10.1016/S0263-8223(02)00349-5. DOI: https://doi.org/10.1016/S0263-8223(02)00349-5

K. Kumar y A. M L, “Simulation For Optimized Modelling of En45A Leaf Spring”, Int. J. Recent Adv. Mech. Eng., vol. 4, núm. 3, pp. 129–142, ago. 2015, doi: 10.14810/ijmech.2015.4310. DOI: https://doi.org/10.14810/ijmech.2015.4310

D. Ashok Kumar y A. Kalam SD, “Design, Analysis and Comparison between the Conventional Materials with Composite Material of the Leaf Springs”, Fluid Mech. Open Access, vol. 03, núm. 01, 2016, doi: 10.4172/2476-2296.1000127. DOI: https://doi.org/10.4172/2476-2296.1000127

K. Ashwini y C. V. Mohan Rao, “Design and Analysis of Leaf Spring using Various Composites – An Overview”, Mater. Today Proc., vol. 5, núm. 2, pp. 5716–5721, 2018, doi: 10.1016/j.matpr.2017.12.166. DOI: https://doi.org/10.1016/j.matpr.2017.12.166

P. Qin, G. Dentel, y M. Mesh, “Multi-leaf spring and Hotchkiss suspension CAE simulation”, en ABAQUS Users’ Conference, 2002, pp. 1–14.

B. Kadziela, M. Manka, T. Uhl, y A. Toso, “Validation and optimization of the leaf spring multibody numerical model”, Arch. Appl. Mech., vol. 85, núm. 12, pp. 1899–1914, dic. 2015, doi: 10.1007/s00419-015-1024-5. DOI: https://doi.org/10.1007/s00419-015-1024-5

W. Krason, Z. Hryciow, y J. Wysocki, “Numerical studies on influence of friction coefficient in multi-leaf spring on suspension basic characteristics”, en AIP Conference Proceedings, 2019, vol. 2078, núm. 1, p. 020049, doi: 10.1063/1.5092052. DOI: https://doi.org/10.1063/1.5092052

W. Krason y J. Wysocki, “Investigation of friction in dual leaf spring”, J. Frict. Wear, vol. 38, núm. 3, pp. 214–220, may 2017, doi: 10.3103/S1068366617030096. DOI: https://doi.org/10.3103/S1068366617030096

W. Krason, J. Wysocki, y Z. Hryciow, “Dynamics stand tests and numerical research of multi-leaf springs with regard to clearances and friction”, Adv. Mech. Eng., vol. 11, núm. 5, pp. 1–13, may 2019, doi: 10.1177/1687814019853353. DOI: https://doi.org/10.1177/1687814019853353

S. A. E. HS788, “Manual on Design and Application of Leaf Springs”, Soc. Automot. Eng., 1982.

J. K. Budynas, Richard G.; Nisbett, Diseño en ingeniería mecánica de Shigley, 8a ed. México, D.F.: McGraw-Hill, 2012.

Imperial Supplies LLC, “Fastener Torque Charts”.

E. Zahavi, “Analysis of a contact problem in leaf springs”, Mech. Res. Commun., vol. 19, núm. 1, pp. 21–27, ene. 1992, doi: 10.1016/0093-6413(92)90006-V. DOI: https://doi.org/10.1016/0093-6413(92)90006-V

T. Shinbori y S. Matsuoka, “Apparatus for controlling friction between leaf springs of a laminated leaf spring assembly”, 4,456,232, 1984.

Modelado de elementos de apriete para precarga en hojas del muelle.

Publicado

2020-11-09

Cómo citar

Rodríguez Reyes, V. I., & Slawomir Szwedowicz, D. (2020). Evaluación del efecto de la precarga de ensamble y la cantidad de hojas sobre la disipación pasiva de energía en un muelle. Revista De Ciencias Tecnológicas, 3(4), 181–195. https://doi.org/10.37636/recit.v34181195

Número

Sección

Artículos de Investigación

Categorías