Synthesis and characterization of crystalline Ni0.76Cu0.24

Authors

  • Luis Antonio Flores Sánchez Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada Universidad 14418. Parque Industrial Internacional Tijuana, C.P. 22390. Tijuana, Baja California, Mexico https://orcid.org/0000-0002-6276-8408
  • Juan Manuel Quintana Melgoza Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada Universidad 14418. Parque Industrial Internacional Tijuana, C.P. 22390. Tijuana, Baja California, Mexico https://orcid.org/0000-0002-3738-0612

DOI:

https://doi.org/10.37636/recit.v21813

Keywords:

Synthesis, Reductive Thermal Decomposition, Characterization, Alloy, Nickel-Copper.

Abstract

In this work, we synthesized the alloy of nickel‒copper by thermal treatment in reductive‒flow of hydrated salts based on Ni and Cu used the stoichiometric 3:1 respectively. The methodology proposed is low‒cost, simple, friendly to environment, and obtain a crystalline phase free of contaminants or remnants of reaction with crystal size of 33 nm and particle size of 659 ± 123 x 416 ± 102 nm, the particles exhibit like‒spherical morphology and heterogeneous agglomerates. In addition, we compared the experimental lattice parameters by theoretical reported and calculated by Vegard's law. The results by Vegard´s law suggest that the composition of copper (XCu) in the alloy is different with respect to the phase identified Ni0.76Cu0.24 by XRD database, but this result don’t affect the lattice parameter. The material was characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and crystal size and copper fraction in alloy was estimated using the Scherrer equation, and Vegard´s law respectively.

Downloads

Download data is not yet available.

References

J. Pinilla, I. Suelves, M. Lázaro, R. Moliner, and J. Palacios, “Parametric Study of the Decomposition of Methane Using a NiCu/Al2O3 Catalyst in a Fluidized Bed Reactor,” International Journal of Hydrogen Energy; vol. 35, pp. 9801-9809, 2010. https://doi.org/10.1016/j.ijhydene.2009.10.008 DOI: https://doi.org/10.1016/j.ijhydene.2009.10.008

J. Pinilla, I. Suelves, M. Lázaro, R. Moliner, and J. Palacios, “Influence of Nickel Crystal Domain Size on the Behaviour of Ni and NiCu Catalysts for the Methane Decomposition Reaction,” Applied Catalysis A: General; vol. 363, pp. 199-207, 2009. https://doi.org/10.1016/j.apcata.2009.05.009 DOI: https://doi.org/10.1016/j.apcata.2009.05.009

S. Ahn, H. Park, I. Choi, S. Yoo, S. Hwang, H. Kim, E. Cho, C. Yoon, H. Park, H. Son, J. Hernandez, S. Nama, T. Lim, S. Kim, and J. Jang, “Electrochemically Fabricated NiCu Alloy Catalysts for Hydrogen Production in Alkaline Water Electrolysis,” International Journal of Hydrogen Energy; vol. 38, pp. 13493-13501, 2013. https://doi.org/10.1016/j.ijhydene.2013.07.103 DOI: https://doi.org/10.1016/j.ijhydene.2013.07.103

N. Homs, J. Llorca, and P. Ramírez de la Piscina, “Low-temperature Steam-Reforming of Ethanol Over ZnO-Supported Ni and Cu Catalysts the Effect of Nickel and Copper Addition to ZnO-Supported Cobalt-Based Catalysts,” Catalysis Today; vol. 116, pp. 361-366, 2006. https://doi.org/10.1016/j.cattod.2006.05.081 DOI: https://doi.org/10.1016/j.cattod.2006.05.081

M. Illán Gómez, S. Brandán, M. Salinas, and A. Linares, “Improvements In NOx Reduction by Carbon Using Bimetallic Catalysts,” Fuel; vol. 80, pp. 2001-2005, 2001. https://doi.org/10.1016/S0016-2361(01)00091-6 DOI: https://doi.org/10.1016/S0016-2361(01)00091-6

T. Fujita, H. Abe, T. Tanabe, Y. Ito, T. Tokunaga, S. Arai, Y. Yamamoto, A. Hirata, and M. Chen, “Earth Abundant and Durable Nanoporous Catalyst for Exhaust-Gas Conversion,” Adv Funct Mater; vol. 26, pp. 1609-1616, 2016. https://doi.org/10.1002/adfm.201504811 DOI: https://doi.org/10.1002/adfm.201504811

E. Vesselli, E. Monachino, M. Rizzi, S. Furlan, X. Duan, C. Dri, A. Peronio, C. Africh, P. Lacovig, A. Baldereschi, G. Comelli, and M. Peressi, “Steering the Chemistry of Carbon Oxides on a NiCu Catalyst,” ACS Catalysis; vol. 3, pp. 1555-1559, 2013. https://doi.org/10.1021/cs400327y DOI: https://doi.org/10.1021/cs400327y

Z. Yan, Z. Xu, W. Zhang, S. Zhao, and Y. Xu, “A Novel Electrochemical Nitrobenzene Sensor Based on NiCu Alloy Electrode,” Int J Electrochem Sci; vol. 7, pp. 2938-2946, 2012. http://www.electrochemsci.org/papers/vol7/7042938.pdf

V. Vegard, “Die Konstitution der Mischkristalle und die Raumfüllong der Atome”. Zeitschrift für Physik. Bd V, 17-26, 1921. https://doi.org/10.1007/BF01349680 DOI: https://doi.org/10.1007/BF01349680

Joint Committee on Powder Diffraction Standards International Centre for Diffraction Data. 2012. https://doi.org/10.1021/ac60293a779 DOI: https://doi.org/10.1021/ac60293a779

A. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Physical Review; vol. 56, pp. 978-982, 1939. https://doi.org/10.1103/PhysRev.56.978 DOI: https://doi.org/10.1103/PhysRev.56.978

W. Kraus, G. Nolse, “PowderCell for Windows”. Federal Institute for Materials Research and Testing Rudower Chausse 5. Germany, 2000. http://www.ccp14.ac.uk/ccp/web-mirrors/powdcell/a_v/v_1/powder/e_cell.html

SEM micrographs of backscattered (a) and secondary (b) of the synthesized sample, which presents hemispherical type morphology (a) and agglomeration with indefinite porous shapes (b).

Published

2019-01-10

How to Cite

Flores Sánchez, L. A., & Quintana Melgoza, J. M. (2019). Synthesis and characterization of crystalline Ni0.76Cu0.24. Revista De Ciencias Tecnológicas, 2(1), 8–13. https://doi.org/10.37636/recit.v21813

Issue

Section

Research articles

Categories

Most read articles by the same author(s)