C6 − C10 hydrocarbons from residual polyethylene


  • Karla Michelle Manjarrez Amaya Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada University 14418 Parque Industrial Internacional Tijuana, Baja California, México, C.P. 22390
  • Ulises Alejandro Villalón López Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada University 14418 Parque Industrial Internacional Tijuana, Baja California, México, C.P. 22390 https://orcid.org/0000-0002-7429-8546
  • Miguel Avalos Borja Potosino Institute of Scientific Research and Technology. Advanced Materials Division, Camino a La Presa San José, Col. Lomas, Section 4, San Luis Potosí, S.L.P., C.P. 78216 https://orcid.org/0000-0003-4515-6415
  • Juan Manuel Quintana Melgoza Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada University 14418 Parque Industrial Internacional Tijuana, Baja California, México, C.P. 22390 https://orcid.org/0000-0002-3738-0612




Residual HDPE, pyrolysis, α−PbO, liquid hydrocarbons.


In this research work, combustible liquid hydrocarbons (gasoline) are obtained with a yield of 90% by means of pyrolysis of high-density polyethylene (HDPE) at 390 ± 5 °C over α−PbO catalyst. The catalytic mass is varied in 10, 15, 20 and 40% w/w using 10 g of HDPE for each experiment. The α−PbO is synthesized at 550 °C in an air atmosphere for 1 hour. Liquid products are characterized by Fourier transform infrared spectroscopy (FT-IR) and gas chromatography and mass spectrometry (GC/MS). The experimental optimal ratio of HDPE/α−PbO for the conversion of residual polyethylene is 20% α−PbO. The analyzes by FT-IR and GC/MS, allow to confirm that the liquids obtained correspond to hydrocarbons with chains in a range of 6 to 10 carbons (C6–C10) and contain an average heat of combustion of 10.9492 kcal/g with potential application as alternative fuels.


Download data is not yet available.


Metrics Loading ...


T. Gornall, "Catalytic Degradation of Waste Polymer", Ph.D. dissertation, Centre for Materials Science, University of Central Lancashire, Preston, UK, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548866

APM, EPRO, "Plasticos-Situación en 2017: Un analisis de los datos sobre produccion, demanda y residuos de plasticos en Europa", España: PlasticsEurope, 2018. https://www.plasticseurope.org/es/resources/publications/363-plasticos-situacion-en-2017

PEMEX, "Anuario Estadístico 2017", Ciudad de México: Petróleos Mexicanos, 2018. https://www.pemex.com/ri/Publicaciones/Paginas/AnuarioEstadistico.aspx

Unenviroment, "El estado de los plásticos. Perspectiva del día mundial del medio ambiente 2018", India, 2018. https://www.unenvironment.org/es/resources/informe/el-estado-de-los-plasticos-perspectiva-del-dia-mundial-del-medio-ambiente-2018

INECC. Informe de la Situación del Medio Ambiente en México. Compendio de Estadísticas Ambientales. Ciudad de México: Impresos Santiago S.A. de C.V., 2016. https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf

SEMANART. Informe de la Situacion del Medio Ambiente en Mexico. Compendio de Estadisticas Ambientales. Indicadores Clave y de Desempeño Ambiental. Edicion 2012, Ciudad de Mexico, 2013. https://apps1.semarnat.gob.mx:8443/dgeia/informe_12eng/pdf/Informe_2012.pdf

D. B. Muñoz, "Craqueo catalitico de polimeros; estudios de diferentes sistemas polimero/catalizador" tesis doctoral, Universitat d' Alicante, Alicante, ES, 2008. http://hdl.handle.net/10045/10327

J. Zeaiter, "A process study on the pyrolysis of waste polyethylene", Fuel. vol. 133, pp. 276-282, May 2014. https://doi.org/10.1016/j.fuel.2014.05.028 DOI: https://doi.org/10.1016/j.fuel.2014.05.028

G. Manos, A. Garforth, J. Dwyer, "Catalytic degradation of high-density polyethylene over different zeolitic structures", Ind. Eng. Chem., vol. 39, no. 5, pp. 1198-1202, March 2000. https://doi.org/10.1021/ie990512q DOI: https://doi.org/10.1021/ie990512q

A. Abbas, S. Shubar, "Pyrolysis of high-density polyethylene for the production of fuel-like liquid hydrocarbon", IJCPE, vol. 9, pp. 23-29, March 2008. https://www.iasj.net/iasj?func=fulltext&aId=4682

S. Kumar, R. Singh, "Thermolysis of high-density polyethylene to petroleum products", Journal of Petroleum Engineering, vol. 2013, pp. 1-7, May 2013. https://doi.org/10.1155/2013/987568 DOI: https://doi.org/10.1155/2013/987568

M. Sogancioglu, Y. Esra, G. Ahmetli, "Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis char", J. Clean. Prod., vol. 165, pp. 369-381, July 2017. https://doi.org/10.1016/j.jclepro.2017.07.157 DOI: https://doi.org/10.1016/j.jclepro.2017.07.157

A. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination", Physical Review, vol. 56, pp. 978-982, November 1939. https://doi.org/10.1103/PhysRev.56.978 DOI: https://doi.org/10.1103/PhysRev.56.978

JCPDS. Base de Datos de la fase cristalografica. Joint Committee on Powder Diffraction Standards - International Centre for Diffraction Data (ICDD), 2018. https://www.icdd.com/assets/support/icdd.pdf

J. Huheey, E. Keiter, and R. Keiter, Principles of Structure and Reactivity, 4th ed. New York: HarperCollins College Publishers, pp. 115-116, 2013. https://shodhganga.inflibnet.ac.in/bitstream/10603/173568/16/16_references.pdf

G. Zschornack, Handbook of X-Ray Data, 1st ed. New York: Springer, 2007. https://doi.org/10.1007/978-3-540-28619-6 DOI: https://doi.org/10.1007/978-3-540-28619-6

B. Boundy, S. Diegel, L. Wright, and S. Davis, Biomass Energy Data Book, 4th ed. Tennessee: U.S. Department of Energy, pp. 201, 2011. https://doi.org/10.2172/1050890 DOI: https://doi.org/10.2172/1050890

US EPA, "Gasoline Blending Streams Category Assessment Document" The American Petroleum Institute, 1100997, 2008. https://petroleumhpv.org/~/media/PetroleumHPV/Documents/2008_aug21_gasoline_catanalysis_final_category_assess_doc.pdf

Micrograph determined by SEM of the material synthesized at 550 ° C corresponding to the α-PbO phase. It presents particles without a defined shape (Ampl. 1500x).



How to Cite

Manjarrez Amaya, K. M., Villalón López, U. A., Avalos Borja, M., & Quintana Melgoza, J. M. (2020). C6 − C10 hydrocarbons from residual polyethylene. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 3(1), 71–75. https://doi.org/10.37636/recit.v317175



Research articles


Most read articles by the same author(s)