Influence of the alkoxy group on the synthesis of cobaltosic oxide for the reduction of nitrogen oxides

Authors

  • Juan Manuel Quintana Melgoza Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada University 14418 Parque Industrial Internacional Tijuana, C.P. 22390. Tijuana, Baja California, Mexico https://orcid.org/0000-0002-3738-0612
  • Luis Antonio Flores Sánchez Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada University 14418 Parque Industrial Internacional Tijuana, C.P. 22390. Tijuana, Baja California, Mexico https://orcid.org/0000-0002-6276-8408

DOI:

https://doi.org/10.37636/recit.v125457

Keywords:

Cobaltosic Oxide, C1-C4 Alcohols, Surface Area, Nitric Oxide Reduction.

Abstract

We present a new methodology for cobaltosic oxide (Co3O4) synthesis. The materials were prepared by reacting alcohols of one-carbon (C1) to four-carbons (C4) of lateral chain with metallic sodium and cobalt nitrate hexahydrate, respectively at 600 ºC under helium stream. As effect of long chain hydrocarbons, C4 is the best precursor of Co3O4, because of its higher surface area than the obtained by C1, C2, C3 precursors. And all the catalysts achieved NO conversion at 400 °C in the range of 69.9 % to 97.5 %. The materials were characterized by X-ray diffraction (XRD), average crystal size, surface area, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S. Mu, Z. Wu, Y. Wang, S. Qi, X. Yang, and D. Wu, “Formation and characterization of cobalt oxide layers on polyimide films via surface modification and ion-exchange technique,” Thin Solid Films, vol. 518, no. 15, pp. 4175–4182, 2010. https://doi.org/10.1016/j.tsf.2009.12.004 DOI: https://doi.org/10.1016/j.tsf.2009.12.004

Y. Yamada, K. Yano, Q. Xu, and S. Fukuzumi, “Cu/Co3O4 Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis,” J. Phys. Chem. C, vol. 114, no. 39, pp. 16456–16462, Oct. 2010. https://doi.org/10.1021/jp104291s DOI: https://doi.org/10.1021/jp104291s

R. Alanís-Oaxaca and J. Jiménez-Becerril, “Titanium Oxide Modification with Oxides of Mixed Cobalt Valence for Photocatalysis,” J. Mex. Chem. Soc., vol. 54, pp. 164–168, 2010. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2010000300007&lng=en&nrm=iso

C.-W. Tang, M.-C. Kuo, C.-J. Lin, C.-B. Wang, and S.-H. Chien, “Evaluation of carbon monoxide oxidation over CeO2/Co3O4 catalysts: Effect of ceria loading,” Catal. Today, vol. 131, no. 1, pp. 520–525, 2008. https://doi.org/10.1016/j.cattod.2007.10.026 DOI: https://doi.org/10.1016/j.cattod.2007.10.026

A. K. Rausch, E. van Steen, and F. Roessner, “New aspects for heterogeneous cobalt-catalyzed hydroamination of ethanol,” J. Catal., vol. 253, no. 1, pp. 111–118, 2008. https://doi.org/10.1016/j.jcat.2007.10.013 DOI: https://doi.org/10.1016/j.jcat.2007.10.013

H. Wu et al., “Co3O4 particles grown over nanocrystalline CeO2: influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation,” Catal. Sci. Technol., vol. 5, no. 3, pp. 1888–1901, 2015. https://doi.org/10.1039/C4CY01158A DOI: https://doi.org/10.1039/C4CY01158A

S. Sun, X. Zhao, M. Yang, L. Ma, and X. Shen, “Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage,” Nanomaterials, vol. 5, no. 4, pp. 2335–2347, Dec. 2015. https://doi.org/10.3390/nano5042335 DOI: https://doi.org/10.3390/nano5042335

National Emissions Inventory, version 2 U.S. Environmental Protection Agency 2012, North Carolina. 2008. https://www.epa.gov/air-emissions-inventories/2008-national-emissions-inventory-nei-data

Joint Committee on Powder Diffraction Standards (JCPDS)-International Centre for Diffraction Data. (ICDD). 15-0755, 44-1159, 43-1035, 1996. https://www.icdd.com/

D. Cullity, “Elements of X-ray Diffraction”, second edition, Addison-Wesley Publishing Company, Inc. Notre Dame, Indiana, U.S.A. 1978. https://www.pearson.com/us/higher-education/product/Cullity-Elements-of-X-Ray-Diffraction-2nd-Edition/9780201011746.html

S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Amer. Chem. Soc., vol. 60, pp. 309-319, 1938. https://doi.org/10.1021/ja01269a023 DOI: https://doi.org/10.1021/ja01269a023

W. Kraus and G. Nolse. Federal Institute for Materials Research and Testing Rudower Chausse 5, 12489 Berlin, Germany. Powder Cell for Windows version 2.4. 2000. http://www.ccp14.ac.uk/ccp/web-mirrors/powdcell/a_v/v_1/powder/e_cell.html

Face-centered cubic unit cell of normal spinel type Co3O4.

Published

2018-01-01

How to Cite

Quintana Melgoza, J. M., & Flores Sánchez, L. A. (2018). Influence of the alkoxy group on the synthesis of cobaltosic oxide for the reduction of nitrogen oxides. REVISTA DE CIENCIAS TECNOLÓGICAS, 1(2), 54–57. https://doi.org/10.37636/recit.v125457

Issue

Section

Research articles

Categories

Most read articles by the same author(s)