Quantum Tunneling in Gradual Potentials

Authors

  • Cristian Gabriel Herbert Galarza Faculty of Sciences, Autonomous University of Baja California. PO Box 1880, 22800 Ensenada, Mexico. https://orcid.org/0000-0003-3141-855X
  • Rogelio Orozco Duarte Faculty of Sciences, Autonomous University of Baja California. PO Box 1880, 22800 Ensenada, Mexico. https://orcid.org/0000-0003-2193-3005
  • Roberto Romo Martínez Faculty of Sciences, Autonomous University of Baja California. PO Box 1880, 22800 Ensenada, Mexico. https://orcid.org/0000-0002-9278-1013

DOI:

https://doi.org/10.37636/recit.v225057

Keywords:

Tunnel effect, Quantum tunneling, Smooth barriers.

Abstract

One of the paradigmatic phenomena of quantum mechanics is undoubtedly the so-called tunnel effect, which manifests itself as the possibility of particles on the nanometer scale to traverse potential barriers. This phenomenon, although unintuitive, is so real that it plays a prominent role in current technology and constitutes the key mechanism of electronic transport in novel concepts of nanoelectronic devices. In this work, maps of electron density are used to illustrate the spatial and energetic distribution of electrons that propagates through gradual potential barriers, visualizing the wave nature of the electrons and the tunneling phenomenon. In particular, the effect of using gradual barriers rather than rectangular barriers is discussed.

Downloads

Download data is not yet available.

References

R. Waser. Nanoelectronics and Information Technology. 2005 WYLEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://www.wiley.com/en-us/Nanoelectronics+and+Information+Technology%3A+Advanced+Electronic+Materials+and+Novel+Devices%2C+3rd+Edition-p-9783527409273

L. Esaki and R. Tsu, "Superlaticce and negative differential conductivity in semiconductors," IBM J. Res. Develop. vol. 14, pp. 61-65, 1970. https://doi.org/10.1147/rd.141.0061 DOI: https://doi.org/10.1147/rd.141.0061

R. Tsu and L. Esaki. 1973. "Tunneling in a finite superlattice," Appl. Phys. Lett, vol. 22, pp. 562, 1973. https://doi.org/10.1063/1.1654509 DOI: https://doi.org/10.1063/1.1654509

J. M. Chamberlain, L. Eaves and J.C. Portal, Electron Properties of Multilayers and Low-Dimensional Semiconductor Structures. NY: Ed. Plenum Press, 1990, L. Esaki, The evolution of semiconductor quantum structures in reduced dimensionality. Do-it -yourself quantum mechanics, pp. 124. https://arxiv.org/pdf/1007.5386

D. K. Ferry, S. M. Goodnick and J. Bird. Transport in nanostructures. New York, NY, USA: Cambrige University Press, 1997, pp. 91-121. https://doi.org/10.1017/CBO9780511840463 DOI: https://doi.org/10.1017/CBO9780511840463

C. Weisbuch and B. Vinter. Quantum Semiconductor Structures:Fundamentals and Applications. Inc. San Diego, California, USA: Academic Press, 1991, pp. 189-215.

https://doi.org/10.1016/B978-0-08-051557-1.50010-X DOI: https://doi.org/10.1016/B978-0-08-051557-1.50010-X

S. Mandrà, S. Valleau and M. Ceotto. "Deep Nuclear Resonant Tunneling Thermal Rate Constant Calculations," Int. J. Quantum Chem. J., vol. 113, pp. 1722-1734, 2013. https://doi.org/10.1002/qua.24395. DOI: https://doi.org/10.1002/qua.24395

C. Grossert, M. Leder, S. Denisov, P. Hänggi, and M. Weitz, “Experimental control of transport resonances in a coherent quantum rocking ratchet,” Nat. Commun., vol. 7, no. 1, p. 10440, 2016. https://doi.org/10.1038/ncomms10440 DOI: https://doi.org/10.1038/ncomms10440

T.J. Slight and C.N. Ironside. "Investigation into the Integration of a Resonant Tunnelling Diode and an Optical Communications Laser: Model and Experiment". IEEE J. of Quantum Electron., vol. 43, no. 7, pp. 580, 2007. https://doi.org/10.1109/JQE.2007.898847 DOI: https://doi.org/10.1109/JQE.2007.898847

Maps of the DLE for a potential of a rectangular barrier of (a) height V = 20 eV, width b = 1.0 nm, and (b) height V = 4 eV and width b = 5.0 nm. Both barriers have the same area (20 eV nm) and are shown superimposed on the graphs (dashed light lines). A contour value 0.98 (solid black lines) (c) is indicated on each map. Transmission coefficient for the barrier of case (b).

Published

2019-04-25

How to Cite

Herbert Galarza, C. G., Orozco Duarte, R., & Romo Martínez, R. (2019). Quantum Tunneling in Gradual Potentials. Revista De Ciencias Tecnológicas, 2(2), 50–57. https://doi.org/10.37636/recit.v225057

Issue

Section

Research articles

Categories

Most read articles by the same author(s)