Resorbable materials in the treatment of pediatric maxillofacial fractures


  • Alex Bernardo Pimentel-Mendoza Faculty of Engineering Sciences and Technology, Autonomous University of Baja California, Blvd. Universitario 1000. Valle de las Palmas Unit, Tijuana, Baja California. C.P. 21500
  • Lazaro Rico-Pérez Autonomous University of Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
  • Luis Jesús Villarreal-Gómez Faculty of Engineering Sciences and Technology, Autonomous University of Baja California, Blvd. Universitario 1000. Valle de las Palmas Unit, Tijuana, Baja California. C.P. 21500



Resorbable, Fixation, Fracture, Pediatric, Screw-Plate System.


Maxillofacial fractures in pediatric patients have differences with adult patients due to the physical and psychological developmental stage in which they are found, so it is important to treat injuries with materials and systems whose negative effect is minimal. The purpose of this research is to perform a review of the knowledge about biodegradable materials and their application as fixation systems for the stabilization of bone fractures in the maxillofacial area of pediatric patients.


Download data is not yet available.


Metrics Loading ...


R. Felipe, N. Restrepo, F. Levi, and D. Serna, “Comparación mecánica de dos sistemas de fijación interna rigida utilizados en la fijación de fracturas faciales (Estudio in vitro),” 262 Rev. Fac. Odontol. Univ. Antioquia, vol. 27, no. 2, pp. 262–280, 2016. DOI:

O. Iribarren and M. Carvajal, “Complicaciones de la fijación interna con placas de titanio de las fracturas maxilofaciales,” Rev. Chil. Cirugía., vol. 54, no. 4, pp. 386–372, 2002.

G. Tomich, P. Baigorria, N. Orlando, M. Méjico, C. Costamagna, and R. Villavicencio, “Frecuencia y tipo de fracturas en traumatismos maxilofaciales: Evaluación con Tomografía Multislice con reconstrucciones multiplanares y tridimensionales,” Rev. argent. radiol, vol. 75, no. 4, pp. 305–317, 2011.

J. L. Munante-Cardenas, P. H. Facchina Nunes, and L. A. Passeri, “Etiology, Treatment, and Complications of Mandibular Fractures,” J. Craniofac. Surg., vol. 26, no. 3, pp. 611–615, 2015. DOI:

E. Ellis, “Treatment methods for fractures of the mandibular angle.,” J. Craniomaxillofac. Trauma, vol. 2, no. 1, pp. 28–36, 1996.

G. Conti, F. Amadori, and S. Civili, “Management of paediatric maxillofacial fractures: Conventional methods and resorbable materials,” no. August 2016, 2015.

B. Mollon and J. W. Busse, “Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: A systematic review and network meta-analysis,” Can J Surg. Vol. 57, no. 3, pp- E105–E118, 2014. DOI:

S. M. Perren, “Evolution of the internal fixation of long bone fractures,” J. bone Jt. Surg., vol. 84–B, no. 8, pp. 1093–1110, 2002. 620X.84B8.0841093 DOI:

S. Pal, “The Design of a Bone Fracture- Fixation Device,” in Design of Artificial Human Joints & Organs, Boston, MA: Springer US, 2014, pp. 101–121. DOI:

M. S. Taljanovic, M. D. Jones, J. T. Ruth, J. B. Benjamin, J. E. Sheppard, and T. B. Hunter, “Fracture fixation,” Radiographics, vol. 23, no. 6, pp. 1569– 1590, 2003. DOI:

A. A. Ali, M. M. Kabbash, S. M. A. Said, M. A. Shoeib, and M. H. Osman, “Use of biodegradable plates and screws in the treatment of pediatric facial bone fractures,” Egypt. J. Oral Maxillofac. Surg., vol. 7, no. 3, pp. 86–93, 2016. 3d DOI:

E. A. Al-Moraissi and E. Ellis, “Surgical management of anterior mandibular fractures: A systematic review and meta-analysis,” J. Oral Maxillofac. Surg., vol. 72, no. 12, p. 2507.e1-2507.e11, 2014. DOI:

M. Oruç et al., “Analysis of Fractured Mandible Over Two Decades,” J. Craniofac. Surg., vol. 27, no. 6, p. 1457—1461, 2016. DOI:

S. Son, M. Motoyoshi, Y. Uchida, and N. Shimizu, “Comparative study of the primary stability of self- drilling and self-tapping orthodontic miniscrews,” Am. J. Orthod. Dentofac. Orthop., vol. 145, no. 4, pp. 480– 485, 2014. DOI:

M. Migliorati et al., “Miniscrew design and bone characteristics: An experimental study of primary stability,” Am. J. Orthod. Dentofac. Orthop., vol. 142, no. 2, pp. 228–234, 2012. DOI:

R. Gutwald, P. Büscher, A. Schramm, and R. Schmelzeisen, “Biomechanical stability of an internal mini-fixation-system in maxillofacial osteosynthesis,” Med Biol Eng Comp, vol. 37, no. Suppl 2, p. 280, 1999.

S. Sauerbier, R. Schön, J. E. Otten, R. Schmelzeisen, and R. Gutwald, “The development of plate osteosynthesis for the treatment of fractures of the mandibular body - A literature review,” J. Cranio- Maxillofacial Surg., vol. 36, no. 5, pp. 251–259, 2008. DOI:

F. Mendez T., D. Encalada S., and M. Torres M., “Prevalencia del trauma maxilofacial en el hospital Luis Vernanza,” Rev. Médica HJCA, vol. 4, no. 2, pp. 123–127, 2012.

B. Baltodano, “Trauma máxilofacial,” Rev. médica costa rica y Centroam., no. 620, pp. 731–737, 2016.

L. L. Avery, S. M. Susarla, and R. A. Novelline, “Multidetector and three- dimensional CT evaluation of the patient with maxillofacial injury,” Radiol. Clin. North Am., vol. 49, no. 1, pp. 183–203, 2011.

L. L. Avery, S. M. Susarla, and R. A. Novelline, “Multidetector and three- dimensional CT evaluation of the patient with maxillofacial injury,” Radiol. Clin. North Am., vol. 49, no. 1, pp. 183–203, 2011. DOI:

F. Witte and A. Eliezer, “Biodegradable metals,” Degrad. Implant Mater., no. March, pp. 93–109, 2012. DOI:

S. Bin Park, E. Lih, K. S. Park, Y. K. Joung, and D. K. Han, “Biopolymer-based functional composites for medical applications,” Prog. Polym. Sci., vol. 68, pp. 77–105, 2017. DOI:

J. Parthasarathy, “3D modeling, custom implants and its future perspectives in craniofacial surgery,” Ann. Maxillofac. Surg., vol. 4, no. 1, p. 9, 2014. DOI:

J. L. L. Cembranos, “Maxillofacial osteosynthesis with resorbable material,” Rev. Española Cir. Oral y Maxilofac., vol. 26, pp. 369–383, 2004.

M. Vert, S. M. Li, G. Spenlehauer, and P. Guerin, “Bioresorbability and biocompatibility of aliphatic polyesters,” J. Mater. Sci. Mater. Med., vol. 3, no. 6, pp. 432–446, 1992. DOI:

D. Eglin and M. Alini, “Degradable polymeric materials for osteosynthesis: Tutorial,” Eur. Cells Mater., vol. 16, pp. 80–91, 2008. DOI:

M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglič, “Biomaterial surface modification of titanium and titanium alloys for medical applications,” Nanomedicine, pp. 111–136, 2014.

G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, “Biomedical Implants: Corrosion and its Preventio - A Review” Recent Patents Corros. Sci., vol. 2, no.1, pp.40–54, 2010. DOI:

H. D. Netto, S. Olate, J. Rodriguez-chessa, and L. Kluppel, “Selección de osteosíntesis en la reconstrucción maxilar con injerto óseo de cresta iliaca,” vol. 10, no. 2, pp. 161–165, 2013.

Nureddin Ashammakhi, N. Ashammakhi, R. Kontio, T. Waris, A. Salo, and C. Lindqvist, “The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery,” Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology, vol. 94, no. 1, pp. 5–14, 2002. DOI:

Altan, İ. Damlar, and O. Şahin, “Can Resorbable Fixation Screws Replace Titanium Fixation Screws? A Nano-Indentation Study,” J. Oral Maxillofac. Surg., vol. 74, no. 7, p. 1421.e1-1421.e5, 2016. DOI:

R. K. Bali, P. Sharma, S. Jindal, and S. Gaba, “To evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures: A prospective study.,” Natl. J. Maxillofac. Surg., vol. 4, no. 2, pp. 167–72, 2013. 5950.127645 DOI:

J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly- lactic acid synthesis for application in biomedical devices - A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012. DOI:

B. Gupta, N. Revagade, and J. Hilborn, “Poly (lactic acid) fiber: An overview,” Prog. Polym. Sci., vol. 32, no. 4, pp. 455–482, 2007. DOI:

J. S. Bergstrom and D. Hayman, “An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications,” Ann. Biomed. Eng., vol. 44, no. 2, pp. 330–340, 2016. DOI:

S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, no. August, pp. 367– 392, 2016. DOI:

M. Murariu and P. Dubois, “PLA composites: From production to properties,” Adv. Drug Deliv. Rev., vol. 107, pp. 17–46, 2016. DOI:

C. M. Agrawal, G. G. Niederauer, and K. a Athanasiou, “Fabrication and Characterization of PLA-PGA Orthopedic Implants.,” Tissue Eng., vol. 1, no. 3, pp. 241–252, 1995. DOI:

Kolk, R. Köhnke, C. H. Saely, and O. Ploder, “Are Biodegradable Osteosyntheses Still an Option for Midface Trauma? Longitudinal Evaluation of Three Different PLA-Based Materials,” Biomed Res. Int., vol. 2015, 2015. DOI:

X.-D. Qiu, “Effects of bioabsorbable miniplate versus miniature titanium fixation system on the stability of mandibular fractures,” Chinese J. Tissue Eng. Res., vol. 19, no. 38, pp. 6155– 6160, 2015.

H. B. Jeon, D. H. Kang, J. H. Gu, and S. A. Oh, “Delayed foreign body reaction caused by bioabsorbable plates used for maxillofacial fractures,” Arch. Plast. Surg., vol. 43, no. 1, pp. 40–45, 2016. DOI:

L. Yang et al., “Complications of Absorbable Fixation in Maxillofacial Surgery: A Meta- Analysis,” PLoS One, vol. 8, no. 6, pp. 1–10, 2013. DOI:

Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, “Biocompatibility and safety of PLA and its copolymers,” Adv. Drug Deliv. Rev., vol. 107, pp. 153–162, 2015. DOI:

F. Pena, T. Grontvedt, G. A. Brown, A. K. Aune, and L. Engebretsen, “Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference,” Am J Sport. Med, vol. 24, no. 3, pp. 329–334, 1996. DOI:

H. Lim et al., “Comparison of resorbable plates and titanium plates for fixation stability of combined mandibular symphysis and angle fractures,” no. December 2012, pp. 285–290, 2014. DOI:

M. J. Sánchez López, D. J.; Villegas Calvo, M.; Cambil, “Sistemas biodegradables de fijación y reconstrucción craneofacial,” Panor. Actual del Medicam., vol. 39, no. 381, pp. 237–240, 2015.

R. L. Reyes and G. V. Gracia, “Uso de tornillos bicorticales reabsorbibles como alternativa en cirugía ortognática de mandíbula: presentación de 2 casos y revisión de la literatura,” Rev. Odont. Mex vol.15 no.4, pp. 239–243, 2011.

R. M. Laughlin, M. S. Block, R. Wilk, R. B. Malloy, and J. N. Kent, “Resorbable Plates for the Fixation of Mandibular Fractures: A Prospective Study,” J. Oral Maxillofac. Surg., vol. 65, no. 1, pp. 89–96, 2007. DOI:

F. Atik, M. S. Ataç, A. Özkan, Y. Kilinç, and M. Arslan, “Biomechanical analysis of titanium fixation plates and screws in mandibular angle fractures,” Niger. J. Clin. Pract., vol. 19, no. 3, pp. 386–390, 2016. DOI:

Y. Chen, Z. Xu, C. Smith, and J. Sankar, “Recent advances on the development of magnesium alloys for biodegradable implants,” Acta Biomater., vol. 10, no. 11, p. 4561—4573, 2014. DOI:

S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 68, p. 948—963, 2016. DOI:

M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, p. 1728—1734, 2006. DOI:

G. Song and S. Song, “A possible biodegradable magnesium implant material,” Adv. Eng. Mater., vol. 9, no. 4, pp. 298–302, 2007. DOI:

F. Witte, “Reprint of: The history of biodegradable magnesium implants: A review,” Acta Biomater., vol. 23, no. S, pp. S28–S40, 2015. DOI:

H. Waizy et al., “In vivo study of a biodegradable orthopedic screw (MgYREZr- alloy) in a rabbit model for up to 12 months.,” J. Biomater. Appl., vol. 28, no. 5, pp. 667–75, 2014. DOI:

M. Ettinger et al., “The biomechanics of biodegradable versus titanium interference screw fixation for anterior cruciate ligament augmentation and reconstruction,” Int. Orthop., vol. 38, no. 12, pp. 2499–2503, 2014. DOI:

L. Tan, X. Yu, P. Wan, and K. Yang, “Biodegradable Materials for Bone Repairs: A Review,” J. Mater. Sci. Technol., pp. 503–513, 2013. DOI:

R. A. Surmenev, M. A. Surmeneva, and A. A. Ivanova, “Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis - A review,” Acta Biomater., vol. 10, no. 2, pp. 557–579, 2014. DOI:

Denry and L. T. Kuhn, “Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering,” Dent. Mater., vol. 32, no. 1, p. 43—53, 2016. DOI:

S. Reddy, S. Wasnik, A. Guha, J. M. Kumar, A. Sinha, and S. Singh, “Evaluation of nano- biphasic calcium phosphate ceramics for bone tissue engineering applications: In vitro and preliminary in vivo studies,” J. Biomater. Appl., vol. 27, no. 5, pp. 565–575, 2013. DOI:

P. Wang, L. Zhao, J. Liu, M. D. Weir, X. Zhou, and H. H. K. Xu, “Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells,” Bone Res., vol. 2, no. July, p. 14017, 2014. DOI:

S. Samavedi, A. R. Whittington, and A. S. Goldstein, “Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior,” Acta Biomater., vol. 9, no. 9, pp. 8037–8045, 2013. DOI:

T. Rios, E. López, and Al. Franco, “Biomateriales Compuestos De Matriz Polimérica Con Refuerzo De Ceramico Bioactivo Usados En Sistemas De Fijación Ósea Revision Del Estado Del Arte,” Rev. Colomb. Mater., pp. 93–99, 2012.

M. Šupová, “Substituted hydroxyapatites for biomedical applications: A review,” Ceram. Int., vol. 41, no. 8, pp. 9203–9231, 2015. DOI:

B. Aksakal, M. Kom, H. B. Tosun, and M. Demirel, “Influence of micro- and nano- hydroxyapatite coatings on the osteointegration of metallic (Ti6Al4 V) and bioabsorbable interference screws: An in vivo study,” Eur. J. Orthop. Surg. Traumatol., vol. 24, no. 5, pp. 813–819, 2014. 013-1236-8 DOI:

S. M. Kim et al., “Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response,” J. Biomed. Mater. Res. - Part A, vol. 102, no. 2, pp. 429– 441, 2014. DOI:

Antoniac, D. Laptoiu, D. Popescu, C. Cotrut, and R. Parpala, “Development of Bioabsorbable Interference Screws: How Biomaterials Composition and Clinical and Retrieval Studies Influence the Innovative Screw Design and Manufacturing Processes,” in Biologically Responsive Biomaterials for Tissue Engineering, I. Antoniac, Ed. New York, NY: Springer New York, 2013, pp. 107– 136. DOI:


Cortese, G. Savastano, M. Amato, G. Pantaleo, and P. P. Claudio, “Intraoral epimucosal fixation for reducible maxillary fractures of the jaws; surgical considerations in comparison to current techniques.,” J. Craniofac. Surg., vol. 25, no. 6, pp. 2184–7, 2014. DOI:

T. B. Dodson and R. C. Pfeffle, “Cost- effectiveness analysis of open reduction/nonrigid fixation and open reduction/rigid fixation to treat mandibular fractures,” Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology, vol. 80, no. 1, pp. 5–11, 1995. DOI:

B. Guyuron and H. C. Vasconez, “Basic Principles of Bone Fixation,” in Fundamentals of Maxillofacial Surgery, J. W. Ferraro, Ed. New York, NY: Springer New York, 1997, pp. 169–185. DOI:

C. Carulli, F. Matassi, S. Soderi, L. Sirleo, G. Munz, and M. Innocenti, “Resorbable screw and sheath versus resorbable interference screw and staples for ACL reconstruction: a comparison of two tibial fixation methods,” Knee Surgery, Sport. Traumatol. Arthrosc., vol. 25, no. 4, pp. 1264–1271, 2017. DOI:

Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, and M. Glogauer, “Biodegradable materials for bone repair and tissue engineering applications,” Materials (Basel)., vol. 8, no. 9, pp. 5744–5794, 2015. DOI:

S.-H. S. Licéaga-Reyes R, Montoya-Perez LA, “Incidencia de fracturas maxilofaciales en pacientes del Servicio de Cirugía Maxilofacial,” Rev Odontol Latinoam, vol. 2, pp. 1–3, 2010.

E. Y. Rha, H. Paik, and J. H. Byeon, “Bioabsorbable Plates and Screws Fixation in Mandible Fractures: Clinical Retrospective Research during a 10-Year Period,” Ann. Plast. Surg., vol. 74, no. 4, pp. 432–436, 2015. DOI:

C. Gaball, S. Lovald, B. Baack, and G. Olson, “Minimally invasive bioabsorbable bone plates for rigid internal fixation of mandible fractures.,” Arch. facial Plast. Surg. Off. Publ. Am. Acad. Facial Plast. Reconstr. Surgery, Inc. Int. Fed. Facial Plast. Surg. Soc., vol. 13, no. 4, pp. 31–35, 2015. DOI:

Division of the facial massif. Adapted from [19, 20]



How to Cite

Pimentel-Mendoza, A. B., Rico-Pérez, L., & Villarreal-Gómez, L. J. (2018). Resorbable materials in the treatment of pediatric maxillofacial fractures. REVISTA DE CIENCIAS TECNOLÓGICAS, 1(1), 1–7.



Review articles


Most read articles by the same author(s)