Experimental measurement of cavitation cloud density in a Slit Venturi

Authors

  • Alejandro Díaz Martínez Instituto Politécnico Nacional SEPI – ESIME. UP Azcapotzalco, Av. de las Granjas 682, Santa Catarina, Azcapotzalco, 02550 Ciudad de México, México https://orcid.org/0000-0002-3783-8056
  • Jesús Eduardo Rivera López Instituto Politécnico Nacional SEPI – ESIME. UP Azcapotzalco
  • José Luis Arciniega Martínez Instituto Politécnico Nacional SEPI – ESIME. UP Azcapotzalco
  • Carlos Alfonso Juárez Navarro Instituto Politécnico Nacional SEPI – ESIME. UP Azcapotzalco
  • Guadalupe Juliana Gutiérrez Paredes Instituto Politécnico Nacional SEPI – ESIME. UP Azcapotzalco
  • Gabriela Esmeralda Orozco Durán Instituto Politécnico Nacional

DOI:

https://doi.org/10.37636/recit.v54331338

Keywords:

Venturi, Cavitation, Thoma Number, Cavitation coefficient, Reynolds number

Abstract

In the present work, the experimental characterization of the formation and development of the cavitation cloud in different liquid temperatures 20, 30, 40, and 50 °C is reported. For this, a hydraulic installation was built whose main element is a Venturi tube with a rectangular section, with it, the necessary flow conditions were generated to form cavitation and measure the thermodynamic properties for the calculation of the Thoma and Reynolds adimensional numbers. The average bias error of the measurements did not exceed 1%, for this reason, the good quality of the calculation in the Thoma and Reynolds numbers was ensured. With the numbers of Thoma "σ" and Re, the different phases of the cavitation cloud were characterized, from incipient, quasi, developed, and supercavitation in the temperature range of the experiment, finding that the transition from incipient to developed cavitation is easier at room temperature since the flow rate will increase only 15.82% compared to the other temperatures. Finally, the density of the fluid in the temperature range of the test remained constant, since it did not vary more than 1%, so it did not affect the flow regime.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ki-Han Kim et Al., "Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction", Fluid Mechanics and Its Applications, Volume 106, Springer, 2014. https://doi.org/10.1007/978-94-017-8539-6

R.W., Fox, A.T., McDonald "Introduction to Fluid Mechanics", 9th. Edition, Wiley and Sons, USA. 2015 Fox and McDonald's Introduction to Fluid Mechanics, 10th Edition | Wiley

F. M., White, "Fluid Mechanics" 7th. Edition, McGraw-Hill, USA. 2009. Fluid Mechanics (mheducation.com)

S., Hattori, B.H., Sun and F.G., Hammitt, "An application of bubble collapse pulse height spectra to venturi cavitation erosion of 1100-o aluminum", Wear, vol. 103, pp. 119 - 131, 1985. https://doi.org/10.1016/0043-1648(85)90128-0

F. Payri, R. Payri, F.J. Salvador, J. Martínez-López, "A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation", Computers & Fluids vol. 58, pp. 88-101, 2012. https://doi.org/10.1016/j.compfluid.2012.01.005

B., Charrière, J., Decaix, E., Goncalvès., "A comparative study of cavitation models in a Venturi flow", European Journal of Mechanics B/Fluids, vol 49, pp. 287 - 297, 2012. https://doi.org/10.1016/j.euromechflu.2014.10.003

M. Wosnik, R.E.A. Arndt, "Measurements in high void-fraction bubbly wakes created by ventilated supercavitation", J. Fluids Eng., vol 135, 2013. https://doi.org/10.1115/1.4023193

S.L. Ceccio, "Friction drag reduction of external flows with bubble and gas injection", Ann. Rev. Fluid Mech. vol 42, pp. 183 - 203, 2010. https://doi.org/10.1146/annurev-fluid-121108-145504

J.P, Franc, J.M., Michel, "Fundamentals of Cavitation", Kluwer Academic Publishers, 2004. https://doi.org/10.1007/1-4020-2233-6

P. Tomov, S. Khelladi, F. Ravelet, C. Sarraf, F. Bakir, P. Vertenoeuil, "Experimental study of aerated cavitation in a horizontal venturi nozzle", Experimental Thermal and Fluid Science. Vol, 70, pp. 85 - 95, 2016. https://doi.org/10.1016/j.expthermflusci.2015.08.018

K., Sato, K., Hachino and Y., Saito, "Inception and Dynamics of Traveling- Bubble-Type Cavitation in a Venturi", Proceedings of Asme FEDSM2003-45322, 2003. https://doi.org/10.1115/FEDSM2003-45322

H. Ghassemi, H. Farshi Fasih, "Application of small size cavitating venturi as flow controller and flow meter", Flow Measurement and Instrumentation, vol. 22, no. 5, pp. 406 - 412, 2011. https://doi.org/10.1016/j.flowmeasinst.2011.05.001

T. A. Bashir, A. G. Soni, A. V. Mahulkar, A. B. Pandit, "The CFD Driven Optimisation of a Modified Venturi for Cavitational Activity", The Canadian Journal of Chemical Engineering, vol. 89, pp 1366 - 1375, 2011. https://doi.org/10.1002/cjce.20500

X. Long, J. Zhang, J. Wang. M. Xu, Q. Lyu, B. Ji, "Experimental investigation of the global cavitation dynamic behaviour in a venturi tube with special emphasis on the cavity length variation", International Journal of Multiphase Flow, vol. 89, pp. 290 - 298, 2017. https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.004

Scheme experimental installation

Published

2022-10-14

How to Cite

Díaz Martínez, A., Rivera López, J. E., Arciniega Martínez, J. L., Juárez Navarro, C. A., Gutiérrez Paredes, G. J., & Orozco Durán, G. E. (2022). Experimental measurement of cavitation cloud density in a Slit Venturi. REVISTA DE CIENCIAS TECNOLÓGICAS, 5(4), 331–338. https://doi.org/10.37636/recit.v54331338

Most read articles by the same author(s)