Improvement of the photoacoustic response in thermal diffusivity measurements
DOI:
https://doi.org/10.37636/recit.v34196205Keywords:
Configuration photoacoustic, Photoacoustic response, Thermal diffusivity, Photoacoustic cell, Rosencwaig and Gersho model.Abstract
An alternative photoacoustic cell configuration for the determination of the thermal diffusivity (α), at room temperature, for solid materials is presented. The method is based on the use of two identical photoacoustic chambers, inside both of them, a metallic foil thermally thin is used to transform the light energy to heat energy. A Reference material placed parallel to a study material allows to relate the thermal properties of the materials used as support in the photoacoustic chambers of the experimental arrangement presented here. The ratio between experimental and theoretical photoacoustic amplitudes is realized to validate a proposed mathematical model.
Downloads
References
A. Salazar, “On thermal diffusivity”. Eur. J. Phys., vol. 24, pp. 351–358, May. 2003. https://iopscience.iop.org/article/10.1088/0143-0807/24/4/353/pdf DOI: https://doi.org/10.1088/0143-0807/24/4/353
L.F. Perondi, L.C.M. Miranda, “Minimal-volume photoacoustic cell measurement of thermal diffusivity: effect of the thermoelastic sample bending”. J. Appl. Phys., Vol. 62. no. 7, pp. 2955e9, 1987. https://doi.org/10.1063/1.339380 DOI: https://doi.org/10.1063/1.339380
N.F. Leite, C. Cella, H. Vargas, L.C.M. Miranda, “Photoacoustic measurement of thermal diffusivity of polymer foils”. J. Appl. Phys. Vol. 61, no. 8, pp. 3025e7, 1987. https://doi.org/10.1063/1.337853 DOI: https://doi.org/10.1063/1.337853
H.K. Park, C.P. Grigoropoulos, A.C. Tam, “Optical measurements of thermal diffusivity of a material”. Int J Thermophys. Vol. 16, no. 4, pp. 973e95, 1995. https://doi.org/10.1007/BF02093477 DOI: https://doi.org/10.1007/BF02093477
A. Calderón, J. J. Alvarado-Gil, Yu Gurevich, A. Cruz-Orea, I. Delgadillo, H. Vargas, L. C.M. Miranda, “Photothermal characterization of electrochemical etching processed n-type porous silicon”. Phys. Rev. Lett. Vol. 79, no. 25, pp. 5022, 1997. https://doi.org/10.1103/PhysRevLett.79.5022 DOI: https://doi.org/10.1103/PhysRevLett.79.5022
A. Calderón, R. A. Muñoz Hernández, and S. A. Tomás, “Method for measurement of the thermal diffusivity in solids: application to metals, semiconductors, and thin materials”. J. Appl. Phys., Vol. 84, no. 11, pp. 6327e9, 1998. https://doi.org/10.1063/1.368957 DOI: https://doi.org/10.1063/1.368957
A. M. Mansanares and H. Vargas. Photoacoustic characterization of a two-layer system. J. Appl. Phys., Vol. 70, no. 11, pp. 7046e50, 1991. https://doi.org/10.1063/1.349782 DOI: https://doi.org/10.1063/1.349782
J. J. Alvarado-Gil, O. Zelaya-Angel, H. Vargas, and J. L. Lucio M. “Photoacoustic characterization of the thermal properties of a semiconductor-glass two-layer system”. Phys. Rev. B., Vol. 50, no. 19, pp. 14627, 1994. https://doi.org/10.1103/PhysRevB.50.14627 DOI: https://doi.org/10.1103/PhysRevB.50.14627
G. C. Astrath Nelson, B. G. Astrath Francine, J. Shen, C. Lei, J. Zhou, S. S. Liu Zhong, et al. “An open-photoacoustic-cell method for thermal characterization of a two-layer system”. J. Appl. Phys. Vol. 107, no. 4, pp. 043514, 2010. https://doi.org/10.1063/1.3310319 DOI: https://doi.org/10.1063/1.3310319
B. Abad, M. Rull-Bravo, Hodson SL, Xu X, Martin-Gonzalez M. “Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect”. Electrochim Acta., Vol.169, pp. 37–45, 2015. https://doi.org/10.1016/j.electacta.2015.04.063 DOI: https://doi.org/10.1016/j.electacta.2015.04.063
A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys, vol. 47, no. 1, pp. 64–69, Jan. 1976. https://doi.org/10.1121/1.2002181 DOI: https://doi.org/10.1063/1.322296
H. S. Bennett and R. A. Forman, “Frequency dependence of photoacoustic spectroscopy: Surface and bulk absorption coefficients,” J. Appl. Phys, vol. 48, no. 4, pp. 1432–1436, Apr. 1977. https://doi.org/10.1063/1.323883 DOI: https://doi.org/10.1063/1.323883
D. Cahen, “Photoacoustic cell for reflection and transmission measurements,” Rev. Sci. Instrum., vol. 52, no. 9, pp. 1306–1310, Sep. 1981. https://doi.org/10.1063/1.1136788 DOI: https://doi.org/10.1063/1.1136788
F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, Aug. 1996. https://doi.org/10.1063/1.1147072 DOI: https://doi.org/10.1063/1.1147072
D. I. Kovsh, D. J. Hagan, and E. W. V. Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express, vol. 4, no. 8, p. 315, Apr. 1999. https://doi.org/10.1364/OE.4.000315 DOI: https://doi.org/10.1364/OE.4.000315
M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing” Appl. Phys. B, vol. 70, no. 6, pp. 895–901, Jun. 2000. https://doi.org/10.1007/PL00021151 DOI: https://doi.org/10.1007/PL00021151
J. P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, Dec. 2004. https://doi.org/10.1016/j.saa.2003.11.046 DOI: https://doi.org/10.1016/j.saa.2003.11.046
J. M. Rey, D. Marinov, D. E. Vogler, and M. W. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B, vol. 80, no. 2, pp. 261–266, Feb. 2005. https://doi.org/10.1007/s00340-004-1705-1 DOI: https://doi.org/10.1007/s00340-004-1705-1
M. Tavakoli, A. Tavakoli, M. Taheri, and H. Saghafifar, “Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS),” Opt. Laser Technol., vol. 42, no. 5, pp. 828–838, Jul. 2010. https://doi.org/10.1016/j.optlastec.2009.12.012 DOI: https://doi.org/10.1016/j.optlastec.2009.12.012
B. Kost, B. Baumann, M. Germer, M. Wolff, and M. Rosenkranz, “Numerical shape optimization of photoacoustic resonators,” Appl. Phys. B, vol. 102, no. 1, pp. 87–93, Jan. 2011. https://doi.org/10.1007/s00340-010-4170-z DOI: https://doi.org/10.1007/s00340-010-4170-z
A. Gutiérrez, J. Giraldo, and M. E. Rodríguez-García, “Técnica fotoacústica aplicada a la determinación de propiedades térmicas de silicio poroso,” Rev. mex. fis., vol. 57, no. 2, pp. 99–105, Abril 2011. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2011000200001&lng=es&nrm=iso>.
P. A. Lomelí Mejía, N. P. Castellanos Abrego, M. M. Méndez González, A. Cruz Orea, and J. L. Jiménez Pérez, “Aplicaciones biofísicas de la fotoacústica,” vol. 1, no. 2, pp. 90–94, 2012. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=37334
Ł. Chrobak and M. Maliński, “Design and optimization of the photoacoustic cell for nondestructive photoacoustic spectroscopy,” Nondestructive. Test. Eval., vol. 28, no. 1, pp. 17–27, Mar. 2013. https://doi.org/10.1080/10589759.2012.667408 DOI: https://doi.org/10.1080/10589759.2012.667408
M. Wolff, B. Kost, and B. Baumann, “Shape-Optimized Photoacoustic Cell: Numerical Consolidation and Experimental Confirmation,” Int. J. Thermophys., vol. 33, no. 10–11, pp. 1953–1959, Nov. 2012. https://doi.org/10.1007/s10765-012-1257-2 DOI: https://doi.org/10.1007/s10765-012-1257-2
M. A. Gondal and M. A. Dastageer, “Design, fabrication, and optimization of photo acoustic gas sensor for the trace level detection of NO2 in the atmosphere,” J. Environ. Sci. Health Part A, vol. 45, no. 11, pp. 1406–1412, Aug. 2010. https://doi.org/10.1080/10934529.2010.500933 DOI: https://doi.org/10.1080/10934529.2010.500933
M. L. Alvarado-Noguez, M. Cano-Europa, C. Hernández-Aguilar, F. A. Domínguez-Pacheco, and A. Cruz-Orea, “Obtención y Análisis del Espectro de Absorción Óptico de Sangrede Rata Fisher con Daño Hepático Mediante Espectroscopía Fotoacústica,” Revista Mexicana de Ingeniería Biomédica, vol. 38, no. 1, pp. 349–356. https://doi.org/10.17488/rmib.38.1.31. DOI: https://doi.org/10.17488/RMIB.38.1.31
M. W. Sigrist, “Photoacoustic Spectroscopy, Applications,” in Encyclopedia of Spectroscopy and Spectrometry, Elsevier, 2017, pp. 589–597. https://doi.org/10.1016/B978-0-12-409547-2.11307-1 DOI: https://doi.org/10.1016/B978-0-12-409547-2.11307-1
L. Bychto, M. Maliński, A. Patryn, M. Tivanov, and V. Gremenok, “Determination of the optical absorption spectra of thin layers from their photoacoustic spectra,” Opt. Mater., vol. 79, pp. 196–199, May 2018. https://doi.org/10.1016/j.optmat.2018.03.043 DOI: https://doi.org/10.1016/j.optmat.2018.03.043
Published
How to Cite
License
Copyright (c) 2020 David Gasca-Figueroa, Micael Gerardo Bravo-Sánchez, Adriana Guzmán-López, José Guadalupe Zavala-Villalpando, Francisco Javier García-Rodríguez
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).