Dynamics model for the thermal performance from a lyophilization process, based on a complete transfer functions matrix

Authors

  • Maria Elizabeth Rodríguez- Ibarra Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México. Universidad TecMilenio, Fudamental Science Department, Camino Real a Humilpan, Corregidora, Querétaro.
  • Eloy Edmundo Rodríguez Vázquez Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México. Universidad Anáhuac Querétaro, School of Engineering, Quantitative Methods and Fundamental Science. Circuito Universidades, El Marques, Querétaro
  • Ana Marell Arteaga-Martínez Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México. Universidad TecMilenio, Fudamental Science Department, Camino Real a Humilpan, Corregidora, Querétaro.
  • Samantha Lilia Narváez-Granados Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México.
  • Helen Janeth Zuñiga-Osorio Universidad Anáhuac Querétaro, School of Engineering, Quantitative Methods and Fundamental Science. Circuito Universidades, El Marques, Querétaro
  • Victor Miguel Villasana-Velázquez Universidad Politécnica de Querétaro, School of Engineering, Carretera a los Cues, El Marques, Querétaro

DOI:

https://doi.org/10.37636/recit.v32120135

Keywords:

Transfer functions matrix, Thermal performance, Lyophilization process.

Abstract

During the beginning of the XX century lyophilization was developed as an alternative technology to extend the storage time for fruit and vegetables or other kind of food; however, the energetic consumption of this technology makes it not an option for common food producers, less over for those one that work by the open field cultivation technique. The main energy consumption in a lyophilization systems are the motors from the vacuum pump and from the refrigerant compressors; due to the temperature range needs the lyophilization systems use to have more than one cooling thermodynamic system based on vapor compression. This paper describes an experimental methodology to get a complete state transfer functions matrix, based on the graphical analysis of the concerned transfer functions magnitude spectra. This experimental data came from a set of test performed at the National Laboratory for Cooling Technology Research (LaNITeF) at the Engineering Center for Industrial Development (CIDESI). The intention of this transfer functions matrix is to be applied in a control strategy to then optimize the energetic performance of the concerned lyophilization system. This function transfer matrix is considered complete because there is not a dynamic order reduction considering its degrees of freedom. The transfer functions matrix describes the dynamic relationship between both the inputs variables that describe the energetic consumption of the lyophilization system, and the ambient conditions, as well as the output variables that represent the dynamical states vector with the variables of interest from the concerned process. The simulation from an experimental scenario worked as the graphical validation of the transfer functions matrix characterized experimentally, so the main conclusion of this scientific work is that this transfer functions matrix can be used as dynamic model to implement control and optimization algorithms.

Downloads

Download data is not yet available.

References

The World Bank, “When it comes to the Hunger Challenge, Producing More Food Isn´t the Only Answer”, 2016. https://www.worldbank.org/en/news/feature/2016/10/12/when-it-comes-to-the-hunger-challenge-producing-more-food-isnt-the-only-answer.

J. Meléndez, “Denuncia desperdicio de toneladas de alimentos al día en AL y el Caribe”, El Universal, 2018. https://www.eluniversal.com.mx/mundo/denuncian-desperdicio-de-toneladas-de-alimentos-al-dia-en-al-y-el-caribe.

R. Akkerman, P. Farahani, and M. Grunow, “Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges,” OR Spectr., vol. 32, no. 4, pp. 863–904, 2010. https://doi.org/10.1007/s00291-010-0223-2 DOI: https://doi.org/10.1007/s00291-010-0223-2

D. Hendrickson, C. Smith, and N. Eikenberry, “Fruit and vegetable access in four low-income food deserts communities in Minnesota,” Agric. Human Values, vol. 23, no. 3, pp. 371–383, 2006. https://doi.org/10.1007/s10460-006-9002-8 DOI: https://doi.org/10.1007/s10460-006-9002-8

A. V Ostrouh and N. G. Kuftinova, “Automation of planning and management of the transportation of production for food-processing industry enterprises,” Autom. Control Comput. Sci., vol. 46, no. 1, pp. 41–48, 2012. https://doi.org/10.3103/S0146411612010063 DOI: https://doi.org/10.3103/S0146411612010063

L. A. Minim, J. S. R. Coimbra, V. P. R. Minim, and J. Telis-Romero, “Influence of Temperature and Water and Fat Contents on the Thermophysical Properties of Milk,” J. Chem. Eng. Data, vol. 47, no. 6, pp. 1488–1491, Nov. 2002. https://doi.org/10.1021/je025546a. DOI: https://doi.org/10.1021/je025546a

L. Barros, P. Baptista, D. M. Correia, J. S. Morais, and I. C. F. R. Ferreira, “Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms.,” J. Agric. Food Chem., vol. 55, no. 12, pp. 4781–4788, Jun. 2007. https://doi.org/10.1021/jf070407o. DOI: https://doi.org/10.1021/jf070407o

P. Vayre, "Pamélioration du proceed de lyophilization pour les protéines á usage pharmaceutique”, E-Mem Academy of Chemistry, Vol 6, Issue 2, pp. 62 – 71, 2007. https://www.pseudo-sciences.org/+Amelioration-du-procede-de-lyophilisation-pour-les-proteines-a-usage+.

A. A. Barresi et al., “Monitoring of the primary drying of a lyophilization process in vials,” Chem. Eng. Process. Process Intensif., vol. 48, no. 1, pp. 408–423, 2009. https://doi.org/10.1016/j.cep.2008.05.004. DOI: https://doi.org/10.1016/j.cep.2008.05.004

J. Barley, “Basic Principles of Freeze Drying”, SP Scientific, https://www.spscientific.com/freeze-drying-lyophilization-basics/, 2012.

The Lyophilization: Our Strength, LB LYOPharm, http://www.lyopharm.it/en/process-of-lyophilization.html, 2014.

K. Zhou and H. Yu, “Application of fuzzy predictive-PID control in temperature control system of Freeze-dryer for medicine material,” in 2011 Second International Conference on Mechanic Automation and Control Engineering, 2011, pp. 7200–7203. https://doi.org/10.1109/MACE.2011.5988712. DOI: https://doi.org/10.1109/MACE.2011.5988712

M. Parvis, S. Grassini, S., and A. Barresi, “Sputtered thermocouple for lyophilization monitoring”, 2012 IEEE International Instrumentation and Measurement, 2012. https://doi.org/10.1109/I2MTC.2012.6229263. DOI: https://doi.org/10.1109/I2MTC.2012.6229263

CCA, 2019, Cuantificación de la pérdida y el desperdicio de alimentos y sus efectos, informe técnico, Comisión para la Cooperación Ambiental, Montreal, Canadá, 149 pp. http://www3.cec.org/islandora/en/item/11813-technical-report-quantifying-food-loss-and-waste-and-its-impacts-es.pdf.

M. López-Martínez, “Formulación del proceso de liofilización en frutas y hortalizas como valor agregado a su presentación a mercados tipo exportación”. Universidad Militar Nueva Granada, [online]. Disponible en: http://hdl.handle.net/10654/14989.

A. Vallan, “A Measurement System for Lyophilization Process Monitoring,” in 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, 2007, pp. 1–5. https://doi.org/10.1109/IMTC.2007.379000 DOI: https://doi.org/10.1109/IMTC.2007.379000

C. Vilas, A. A. Alonso, E. Balsa-Canto, E. López-Quiroga, and I. C. Trelea, “Model-based real time operation of the freeze-drying process,” Processes, vol. 8, no. 3, pp. 1–21, 2020. https://doi.org/10.3390/pr8030325 DOI: https://doi.org/10.3390/pr8030325

D. Fissore, R. Pisano, and A. A. Barresi, “On the use of temperature measurement to monitor a freeze-drying process for pharmaceuticals,” in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2017, pp. 1–6. https://doi.org/10.1109/I2MTC.2017.7969890 DOI: https://doi.org/10.1109/I2MTC.2017.7969890

B. L. Caballero, C. J. Márquez, and M. I. Betancur, “Efecto de la liofilización sobre las características físico-químicas del Ajórocoto (Capsicum pubescens R & P) con o sin semilla,” Bioagro, vol. 29, pp. 225–234, 2017. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612017000300008&lng=es&tlng=es.

A. Baheti, L. Kumar, and A. K. Bansal, “Excipients used in lyophilization of small molecules,” J. Excipients Food Chem., vol. 1, no. 1, pp. 41–54, 2010. https://ojs.abo.fi/ojs/index.php/jefc/article/view/21.

Experimental setup of the lyophilization device.

Published

2020-06-30

How to Cite

Rodríguez- Ibarra, M. E., Rodríguez Vázquez, E. E., Arteaga-Martínez, A. M., Narváez-Granados, S. L., Zuñiga-Osorio, H. J., & Villasana-Velázquez, V. M. (2020). Dynamics model for the thermal performance from a lyophilization process, based on a complete transfer functions matrix. Revista De Ciencias Tecnológicas, 3(2), 120–135. https://doi.org/10.37636/recit.v32120135

Issue

Section

Research articles

Categories

Most read articles by the same author(s)