Numerical analysis of the dispersion of a contaminant through a simplified porous medium

Authors

  • Lucía Morales-Arévalo Centro de Investigación e Innovación Tecnológica-Instituto Tecnológico de Nuevo León-Tecnológico Nacional de México, Av. De la Alianza No. 507, interior del Parque de Investigación e Innovación Tecnológica (PIIT). Km. 10 de la Autopista al Aeropuerto Internacional Mariano Escobedo. Apodaca, Nuevo León, C.P. 66629, México
  • René Sanjuan-Galindo Centro de Investigación e Innovación Tecnológica-Instituto Tecnológico de Nuevo León-Tecnológico Nacional de México https://orcid.org/0000-0002-9349-2256
  • Norma Alicia Ramos-Delgado CONACyT-Tecnológico Nacional de México/Instituto Tecnológico de Nuevo León-Centro de Investigación e innovación Tecnológica. Av. De la Alianza No. 507, Parque de Investigación e Innovación Tecnológica, Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Apodaca Nuevo León. C.P. 66629, México https://orcid.org/0000-0003-2781-9289
  • Oscar Adrián Morales-Contreras Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. https://orcid.org/0000-0003-0118-8132
  • Ana Teresa Mendoza-Rosas CONACYT - Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, 58000, Morelia, Mich., México. https://orcid.org/0000-0001-5925-4791
  • Alejandro Alonzo-García CONACyT-Tecnológico Nacional de México/Instituto Tecnológico de Nuevo León-Centro de Investigación e innovación Tecnológica. Av. De la Alianza No. 507, Parque de Investigación e Innovación Tecnológica, Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Apodaca Nuevo León. C.P. 66629, México

DOI:

https://doi.org/10.37636/recit.v428798

Keywords:

Porous media, Turbulent flow, Pollutan dispersion

Abstract

It is presented the numerical analysis of the pollutant dispersion in porous media composed of infinite arrays of particles with different diameter ratios (DR). The DR ranged from 0.2 to 0.8, representing several degrees of expansion-contraction of the pore paths, not included in previous models. The corresponding porosities (f) covered the interval 0.27<f<0.72, and the pore Reynolds number was set to 50×103 which represented fully developed turbulent conditions. Results showed that for the case of DR=0.2 and f=0.27, the wake structures behind the smaller particles are elongated along with the gap spaces between particles, enhancing hence, the tracer dispersion. Oppositely, for the highest DR case, the porosity is lower and although the local velocities are high, the wake behind smaller particles are disrupted, and the homogeneity time increased drastically. Thus, eddy structures inside pore domains play a key role in the dispersion of a tracer. Taking into account that domains with large f contain less solid phase, this effect could be considered in the optimization of several engineering devices as cooling fins, arrays of tubes in heat exchangers, and static mixers to mention a few.

Downloads

Download data is not yet available.

References

A. Dybbs and R. V. Edwards, Fundamentals of Transport Phenomena in Porous Media. 1984.

J. S. Weitzman, L. C. Samuel, A. E. Craig, R. B. Zeller, and S. G. Monismith, "On the use of refractive ‑ index ‑ matched hydrogel for fluid velocity measurement within and around geometrically complex solid obstructions," Exp. Fluids, vol. 55, no. November, pp. 1-12, 2014. DOI: https://doi.org/10.1007/s00348-014-1862-x

https://doi.org/10.1007/s00348-014-1862-x. DOI: https://doi.org/10.1007/s00348-014-1862-x

Y. Jin, M. F. Uth, A. V. Kuznetsov, and H. Herwig, "Numerical investigation of the possibility of macroscopic turbulence in porous media: A direct numerical simulation study," J. Fluid Mech., vol. 766, pp. 76-103, 2015. https://doi.org/10.1017/jfm.2015.9. DOI: https://doi.org/10.1017/jfm.2015.9

A. Rasam, G. Brethouwer, P. Schlatter, Q. Li, and A. V. Johansson, "Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy simulations of channel flow," J. Turbul., vol. 12, no. December, pp. 1-20, 2011. https://doi.org/10.1080/14685248.2010.541920 DOI: https://doi.org/10.1080/14685248.2010.541920

C. Hrenya, S. Miller, T. Mallo, and J. Sinclair, "Comparison of low Reynolds number k-ε turbulence models in predicting heat transfer rates for pipe flow," Int. J. Heat Mass Transf., vol. 41, no. 11, pp. 1543-1547, 1998. https://doi.org/10.1016/S0017-9310(97)00208-1. DOI: https://doi.org/10.1016/S0017-9310(97)00208-1

F. Kuwahara, T. Yamane, and A. Nakayama, "Large eddy simulation of turbulent flow in porous media," Int. Commun. Heat Mass Transf., vol. 33, no. 4, pp. 411-418, 2006. https://doi.org/10.1016/j.icheatmasstransfer.2005.12.011. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2005.12.011

P. Kundu, V. Kumar, Y. Hoarau, and I. M. Mishra, "Numerical simulation and analysis of fluid flow hydrodynamics through a structured array of circular cylinders forming porous medium," Appl. Math. Model., vol. 40, no. 23-24, pp. 9848-9871, 2016. https://doi.org/10.1016/j.apm.2016.06.043. DOI: https://doi.org/10.1016/j.apm.2016.06.043

J. Tu, G.-H. Yeoh, and C. Liu, Computational Fluid Dynamics, A Practical Approach, Second. Massachusetts: Butterworth-Heinemann, 2009.

D. C. Wilcox, Turbulence Modeling for CFD, First ed. California: DCW Industries, 1993.

M. H. J. Pedras and M. J. S. de Lemos, "Macroscopic turbulence modeling for incompressible flow through undefromable porous media," Int. J. Heat Mass Transf., vol. 44, no. 6, pp. 1081-1093, 2001. https://doi.org/10.1016/S0017-9310(00)00202-7. DOI: https://doi.org/10.1016/S0017-9310(00)00202-7

A. Nakayama and F. Kuwahara, "A macroscopic turbulence model for flow in a porous medium," J. Fluids Eng., vol. 121, no. June 1999, pp. 427-433, 1999. https://doi.org/10.1115/1.2822227. DOI: https://doi.org/10.1115/1.2822227

A. Nakayama and F. Kuwahara, "A General Macroscopic Turbulence Model for Flows in Packed Beds, Channels, Pipes, and Rod Bundles," J. Fluids Eng., vol. 130, no. 10, p. 101205, 2008. https://doi.org/10.1115/1.2969461. DOI: https://doi.org/10.1115/1.2969461

J. Yang, M. Zhou, S. Y. Li, S. S. Bu, and Q. W. Wang, "Three-dimensional numerical analysis of turbulent flow in porous media formed by periodic arrays of cubic, spherical, or ellipsoidal particles," J. Fluids Eng. Trans. ASME, vol. 136, no. 1, p. 011102, 2014. https://doi.org/10.1115/1.4025365. DOI: https://doi.org/10.1115/1.4025365

A. Alonzo-Garcia, A. T. Mendoza-Rosas, M. A. Díaz-Viera, S. A. Martinez-Delgadillo, and E. Martinez-Mendoza, "Assessment of Low-Re turbulence models and analysis of turbulent flow in porous media consisting of square cylinders with different diameter ratios," J. Fluids Eng., vol. 143, no. 1, p. 18, 2020. https://doi.org/10.1115/1.4048284. DOI: https://doi.org/10.1115/1.4048284

Temporal evolution of the tracer dispersion for DR = 0.2 and DR = 0.8.

Published

2021-07-01

How to Cite

Morales-Arévalo, L., Sanjuan-Galindo, R., Ramos-Delgado, N. A., Morales-Contreras, O. A., Mendoza-Rosas, A. T., & Alonzo-García, A. (2021). Numerical analysis of the dispersion of a contaminant through a simplified porous medium. Revista De Ciencias Tecnológicas, 4(2), 87–98. https://doi.org/10.37636/recit.v428798

Issue

Section

Research articles

Categories