Diseño y análisis de elemento finito de un inserto para empaque manufacturado por impresión 3D

Autores/as

  • Ismael Alejandro Muñoz Salazar Posgrado CIATEQ, A.C. Centro de Tecnología Avanzada, Eje 126 No. 225, Zona Industrial del Potosí, 78395, San Luis Potosí, México https://orcid.org/0009-0004-4346-7409
  • Isaías Emmanuel Garduño Olvera CONAHCYT – CIATEQ, A.C. Centro de Tecnología Avanzada, Eje 126 No. 225, Zona Industrial del Potosí, 78395, San Luis Potosí, México https://orcid.org/0000-0002-8944-7954
  • Mayra del Angel Monroy Plásticos y Materiales Avanzados – CIATEQ, A.C. Centro de Tecnología Avanzada, Eje 126 No. 225, Zona Industrial del Potosí, 78395, San Luis Potosí, México https://orcid.org/0000-0001-8205-0949

DOI:

https://doi.org/10.37636/recit.v6n3e254

Palabras clave:

Inserto para empaque, Análisis por elemento finito, Inserto para empaque; Análisis por elemento finito; Impresión 3D

Resumen

Los insertos de empaque juegan un papel crucial en la protección de los productos durante el transporte. Sin embargo, sus procesos de diseño y producción a menudo se basan en métodos convencionales que limitan las capacidades del equipo. Además, la naturaleza empírica de su diseño puede resultar en una falta de confiabilidad en el producto final. Para abordar estos desafíos, este estudio tuvo como objetivo validar el diseño de un inserto de empaque utilizando el método de elementos finitos y posteriormente crearlo mediante impresión 3D. El material elegido es un filamento de poliuretano termoplástico (TPU) comúnmente utilizado en impresoras de filamento de deposición fundida para impresión 3D. Este proceso demuestra la viabilidad de utilizar la impresión 3D para crear insertos acolchados para empaques y emplear el análisis de elementos finitos para simular el comportamiento del inserto. Los principales hallazgos de esta investigación destacan los beneficios potenciales de la simulación numérica, revelando las áreas donde el inserto se ve afectado principalmente por el peso. Además, los resultados de la simulación de carga y desplazamiento de fuerzas confirman que el límite elástico de TPU (3.9x106 MPa) es suficiente para manejar el peso que este inserto pretende soportar. Estas herramientas determinan la viabilidad del diseño propuesto para su aplicación prevista. Por lo tanto, este estudio verifica que la impresión 3D es una opción confiable para producir insertos de empaque, que ofrece ventajas significativas sobre los métodos tradicionales. Estas ventajas incluyen una mayor flexibilidad de diseño y la capacidad de crear insertos personalizados bajo demanda.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

United Parcel Service of America, "UPS," [Online]. Available: https://www.ups.com/us/en/home.page. [Accessed: Apr. 5, 2023].

A. Emblem, Ed., Packaging Technology: Fundamentals, Materials, and Processes. Elsevier, 2012. DOI: https://doi.org/10.1533/9780857095701

R. Hernandez, S. Selke, and J. Culter, Plastics Packaging. Munich: Hanser, 2000.

G. Giles and D. Bain, Eds., Technology of Plastics Packaging for the Consumer Market. Oxford, UK: Wiley, 2001.

N. Theobald and B. Winder, "Packaging Closures and Sealing Systems," Sheffield Academic Press, Sheffield, 2006. [Online]. Available: http://www.sheffieldacademicpress.com/books/technology/packaging-closures-and-sealing-systems. [Accessed: Apr. 5, 2023].

J. P. Kruth, G. Levy, F. Klocke and T. H. C. Childs, Eds., Additive Manufacturing: Second Edition. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2020.

A. Cattenone, S. Morganti, G. Alaimo, and F. Auricchio, "Finite element analysis of additive manufacturing based on fused deposition modeling: Distortions prediction and comparison with experimental data," Journal of Manufacturing Science and Engineering, vol. 141, no. 1, p. 011008, Jan. 2019. https://doi.org/10.1115/1.4041626 DOI: https://doi.org/10.1115/1.4041626

International Trade Center. (2010). Packaging design: A practitioner's manual. Geneva, Switzerland: International Trade Center UNCTAD/WTO.

I. Blanco, "The use of composite materials in 3D printing," Journal of Composites Science, vol. 4, no. 2, p. 42, 2020. https://doi.org/10.3390/jcs4020042 DOI: https://doi.org/10.3390/jcs4020042

H. A. Colorado, E. I. G. Velásquez, and S. N. Monteiro, "Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives," Journal of Materials Research and Technology, vol. 9, no. 4, pp. 8221-8234, 2020. https://doi.org/10.1016/j.jmrt.2020.04.062 DOI: https://doi.org/10.1016/j.jmrt.2020.04.062

N. Elmrabet and P. Siegkas, "Dimensional considerations on the mechanical properties of 3D printed polymer parts," Polymer Testing, vol. 90, p. 106656, 2020. https://doi.org/10.1016/j.polymertesting.2020.106656 DOI: https://doi.org/10.1016/j.polymertesting.2020.106656

B. Wittbrodt and J. M. Pearce, "The effects of PLA color on material properties of 3-D printed components," Additive Manufacturing, vol. 8, pp. 110-116, 2015. https://doi.org/10.1016/j.addma.2015.09.006 DOI: https://doi.org/10.1016/j.addma.2015.09.006

M. Schmitt, R. M. Mehta, and I. Y. Kim, "Additive manufacturing infill optimization for automotive 3D-printed ABS components," Rapid Prototyping Journal, vol. 26, no. 1, pp. 89-99, Jan. 2020. https://doi.org/10.1108/RPJ-01-2019-0007 DOI: https://doi.org/10.1108/RPJ-01-2019-0007

R. S. Ambekar, B. Kushwaha, P. Sharma, F. Bosia, M. Fraldi, N. M. Pugno, and C. S. Tiwary, "Topologically engineered 3D printed architectures with superior mechanical strength," Materials Today, vol. 48, pp. 72-94, 2021. https://doi.org/10.1016/j.mattod.2021.03.014 DOI: https://doi.org/10.1016/j.mattod.2021.03.014

ASTM International, "Standard test method for tensile properties of plastics," ASTM D638-14, West Conshohocken, PA: ASTM International, 2018.

International Organization for Standardization, "Plastics Determination of tensile properties Part 1: General principles," ISO 527-1:2019, 2019.

A. El Moumen, M. Tarfaoui, and K. Lafdi, "Modelling of the temperature and residual stress fields during 3D printing of polymer composites," The International Journal of Advanced Manufacturing Technology, vol. 104, pp. 1661-1676, 2019. https://doi.org/10.1007/s00170-019-03965-y DOI: https://doi.org/10.1007/s00170-019-03965-y

T. Yao, Z. Deng, K. Zhang, and S. Li, "A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations," Composites Part B: Engineering, vol. 163, pp. 393-402, 2019. https://doi.org/10.1016/j.compositesb.2019.01.025 DOI: https://doi.org/10.1016/j.compositesb.2019.01.025

P. Wang, B. Zou, H. Xiao, S. Ding, and C. Huang, "Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK," Journal of Materials Processing Technology, vol. 271, pp. 62-74, 2019. https://doi.org/10.1016/j.jmatprotec.2019.03.016 DOI: https://doi.org/10.1016/j.jmatprotec.2019.03.016

J. Zhang, Y.-G. Jung, and C. Additive Manufacturing: Materials, Processes, Quantifications, and Applications. Butterworth-Heinemann. 2018. DOI: https://doi.org/10.1016/B978-0-12-812155-9.00002-5

ISO/ASTM52900-15, "Standard Guide for Additive Manufacturing - General Principles - Terminology," International Organization for Standardization and ASTM International, West Conshohocken, PA, 2015.

Z. Andleeb, H. Khawaja, K. Andersen, and M. Moatamedi, "Finite Element Analysis to determine the impact of Infill density on Mechanical Properties of 3D Printed Materials," in Proceedings of the 2022 International Conference on Additive Manufacturing and 3D Printing, TBD. https://doi.org/10.21152/1750-9548.16.3.317 DOI: https://doi.org/10.21152/1750-9548.16.3.317

M. Scapin and L. Peroni, "Numerical simulations of components produced by fused deposition 3D printing," Materials, vol. 14, no. 16, pp. 4625, 2021. https://doi.org/10.3390/ma14164625 DOI: https://doi.org/10.3390/ma14164625

M. Alharbi, I. Kong, and V. I. Patel, "Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis," Applied Adhesion Science, vol. 8, no. 1, pp. 1-10, 2020. https://doi.org/10.1186/s40563-020-00128-1 DOI: https://doi.org/10.1186/s40563-020-00128-1

J. Zhang, X. Z. Wang, W. W. Yu, and Y. H. Deng, "Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling," Materials & Design, vol. 130, pp. 59-68, 2017. https://doi.org/10.1016/j.matdes.2017.05.040 DOI: https://doi.org/10.1016/j.matdes.2017.05.040

H. Xia, J. Lu, and G. Tryggvason, "A numerical study of the effect of viscoelastic stresses in fused filament fabrication," Computer Methods in Applied Mechanics and Engineering, vol. 346, pp. 242-259, 2019. https://doi.org/10.1016/j.cma.2018.11.031 DOI: https://doi.org/10.1016/j.cma.2018.11.031

A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti, and M. S. Bishnoi, "Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts," World Journal of Engineering, vol. 16, no. 4, pp. 550-559, 2019. https://doi.org/10.1108/WJE-09-2018-0329 DOI: https://doi.org/10.1108/WJE-09-2018-0329

S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, and A. Arias, "Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties," Materials & Design, vol. 188, p. 108414, 2020. https://doi.org/10.1016/j.matdes.2019.108414 DOI: https://doi.org/10.1016/j.matdes.2019.108414

A. Armillotta, M. Bellotti, and M. Cavallaro, "Warpage of FDM parts: Experimental tests and analytic model," Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 140-152, 2018. https://doi.org/10.1016/j.rcim.2017.09.007 DOI: https://doi.org/10.1016/j.rcim.2017.09.007

S. Wickramasinghe, T. Do, and P. Tran, "FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects, and treatments," Polymers, vol. 12, no. 7, p. 1529, 2020. https://doi.org/10.3390/polym12071529 DOI: https://doi.org/10.3390/polym12071529

N. González-Bautista, V. H. Mercado-Lemus, M. Hernández-Hernández, H. Arcos-Gutierrez, and I. E. Garduño-Olvera, "Methodology to implement CAE validation in repair & redesign parts process of plastic injection molds," Revista de Ciencias Tecnológicas, vol. 5, no. 1, pp. 176-193, 2022. https://doi.org/10.37636/recit.v51176193 DOI: https://doi.org/10.37636/recit.v51176193

T. S. Tamir, G. Xiong, Q. Fang, Y. Yang, Z. Shen, M. Zhou, and J. Jiang, "Machine-learning-based monitoring and optimization of processing parameters in 3D printing," Int. J. Comput. Integr. Manuf., vol. 35, no. 3, pp. 1-17, 2022. https://doi.org/10.1080/0951192X.2022.2145019 DOI: https://doi.org/10.1080/0951192X.2022.2145019

P. D. Nguyen, T. Q. Nguyen, Q. B. Tao, F. Vogel, and H. Nguyen-Xuan, "A data-driven machine learning approach for the 3D printing process optimisation," Virtual and Physical Prototyping, vol. 17, no. 4, pp. 768-786, 2022. https://doi.org/10.1080/17452759.2022.2068446 DOI: https://doi.org/10.1080/17452759.2022.2068446

S. Nasiri and M. R. Khosravani, "Machine learning in predicting mechanical behavior of additively manufactured parts," Journal of materials research and technology, vol. 14, pp. 1137-1153, 2021. https://doi.org/10.1016/j.jmrt.2021.07.004 DOI: https://doi.org/10.1016/j.jmrt.2021.07.004

G. D. Goh, S. L. Sing, and W. Y. Yeong, "A review on machine learning in 3D printing: applications, potential, and challenges," Artificial Intelligence Review, vol. 54, no. 1, pp. 63-94, 2021. https://doi.org/10.1007/s10462-020-09876-9 DOI: https://doi.org/10.1007/s10462-020-09876-9

Dassault Systèmes SolidWorks Corp., SolidWorks [Computer software], Available: https://www.solidworks.com/

V. V. Mazur, "Theoretical study of the force heterogeneity of airless tires made of elastic polyurethanes," vol. 1, pp. 891, 2021. https://doi.org/10.1007/978-3-030-85233-7_2 DOI: https://doi.org/10.1007/978-3-030-85233-7_2

Las fuerzas simuladas numéricamente en el inserto muestran que la pieza se estaría doblando, volviendo a su posición normal una vez retirada la carga, sin ningún riesgo significativo de colapso

Publicado

2023-07-10

Cómo citar

Muñoz Salazar , I. A., Garduño Olvera , I. E., & del Angel-Monroy, M. (2023). Diseño y análisis de elemento finito de un inserto para empaque manufacturado por impresión 3D. REVISTA DE CIENCIAS TECNOLÓGICAS, 6(3), e254. https://doi.org/10.37636/recit.v6n3e254