Desarrollo y rediseño de envases flexibles bajo criterios de sostenibilidad

Autores/as

  • Johnatan Gabriel Bernal-Carrillo POSGRADO CIATEQ A.C., Centro de Tecnología Avanzada, Circuito de la Industria Poniente Lote 11, Manzana 3, No. 11, Col. Parque Industrial Ex Hacienda Doña Rosa, Lerma de Villada, 52004, Estado de México, México. https://orcid.org/0009-0005-8942-7776
  • Fernando Sebastián Chiwo-González CIATEQ A.C., Centro de Tecnología Avanzada, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México https://orcid.org/0000-0002-1990-163X
  • Ana del Carmen Susunaga-Notario CONAHCYT–ICAT Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito escolar s/n, Ciudad Universitaria, Col UNAM, CU, Delegación Coyoacán, 04510, Ciudad de México, México. https://orcid.org/0000-0003-0528-3719
  • Mayra del Ángel–Monroy CIATEQ A.C., Centro de Tecnología Avanzada, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México. https://orcid.org/0000-0001-8205-0949
  • Hugo Arcos–Gutiérrez CONAHCYT–CIATEQ A.C., Centro de Tecnología Avanzada, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México. https://orcid.org/0000-0002-4267-4850
  • Isaías Emmanuel Garduño-Olvera CONAHCYT–CIATEQ A.C., Centro de Tecnología Avanzada, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México. https://orcid.org/0000-0002-8944-7954

DOI:

https://doi.org/10.37636/recit.v7n1e253

Palabras clave:

Economía circular, Desarrollo sostenible, Reciclabilidad, Monomaterial, Envases flexibles

Resumen

La economía circular y el desarrollo sostenible son temas críticos hoy en día, dada la creciente contaminación ambiental provocada por los residuos sólidos, especialmente los plásticos. Además, los residuos plásticos han generado importantes preocupaciones sociales y han alertado a los diseñadores de productos plásticos. Por lo tanto, desarrollar o rediseñar productos plásticos en la industria del embalaje flexible es imperativo para garantizar su reciclabilidad al final de su ciclo de vida. Es necesario garantizar que las propiedades mecánicas y de barrera de los envases de plástico ecológicos permanezcan intactas para usos específicos. El presente estudio tiene como objetivo rediseñar los envases flexibles, enfocándose en proporcionar las propiedades mecánicas y de barrera del envase adecuadas para aplicaciones de la industria alimentaria, ofreciendo así una solución a través de nuevas propuestas de diseño que permitan el desarrollo de envases sostenibles y flexibles, enfatizando en la reducción de materiales y la reciclabilidad. Este estudio evaluó y comparó las propiedades mecánicas del embalaje propuesto con las de los productos existentes. Los resultados demostraron la viabilidad de reducir el espesor de la película plástica o eliminar capas en una estructura trilaminada y realizar la transición a una estructura bilaminada. Este ajuste no comprometió las propiedades mecánicas y de barrera; la barrera de oxígeno se mantuvo en 35.39 cc/m2*día y la humedad se situó en 0.57 mg/m2*día. Esta investigación condujo a una reducción del 26.48% en el consumo de materia prima de bobinas laminadas y un 12.68% en empaque tipo doypack utilizadas en aplicaciones alimentarias. En consecuencia, la disminución del uso de materiales y la adopción de estructuras monomateriales minimizaron significativamente el impacto ambiental de la contaminación por desechos plásticos debido a la posibilidad de reciclar mecanicamente el producto final.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Ana del Carmen Susunaga-Notario, CONAHCYT–ICAT Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito escolar s/n, Ciudad Universitaria, Col UNAM, CU, Delegación Coyoacán, 04510, Ciudad de México, México.

 

 

Citas

A. G. Azevedo, C. Barros, S. Miranda, A. V. Machado, O. Castro, B. Silva, and M. A. Cerqueira, "Active Flexible Films for Food Packaging: A Review," Polymers (Basel), vol. 14, no. 12, pp. 2442, 2022. https://doi.org/10.3390/polym14122442 DOI: https://doi.org/10.3390/polym14122442

I. Karimi Sani, M. Masoudpour-Behabadi, M. Alizadeh Sani, H. Motalebinejad, A. S. M. Juma, A. Asdagh, and F. Mohammadi, "Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films," Food Chem, vol. 405, pt. B, p. 134964, 2023. https://doi.org/10.1016/j.foodchem.2022.134964 DOI: https://doi.org/10.1016/j.foodchem.2022.134964

K. Sasikumar and S.G. Krishna, "Solid waste management," PHI Learning Pvt. Ltd, 2009.

O. I. Nkwachukwu, C. H. Chima, A. O. Ikenna, and L. Albert, "Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries," Int. J. Ind. Chem., vol. 4, pp. 1-13, 2013. https://doi.org/10.1186/2228-5547-4-34 DOI: https://doi.org/10.1186/2228-5547-4-34

T. M. Letcher, Ed., "Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions," Academic Press, 2020.

H. K. Lamba, N. S. Kumar, and S. Dhir, "Circular economy and sustainable development: a review and research agenda," Int. J. Prod. Perform. Manage., vol. (ahead-of-print), 2023. https://doi.org/10.1108/IJPPM-06-2022-0314 DOI: https://doi.org/10.1108/IJPPM-06-2022-0314

R. Kumar et al., "Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions," Sustainability, vol. 13, no. 17, p. 9963, Sep. 2021. https://doi.org/10.3390/su13179963 DOI: https://doi.org/10.3390/su13179963

M. Sadiq, T. Q. Ngo, A. A. Pantamee, K. Khudoykulov, T. Thi Ngan, and L. P. Tan, "The role of environmental social and governance in achieving sustainable development goals: evidence from ASEAN countries," Economic Research-Ekonomska Istraživanja, vol. 36, no. 1, pp. 170-190, 2023. https://doi.org/10.1080/1331677X.2022.2072357 DOI: https://doi.org/10.1080/1331677X.2022.2072357

P. P. Rogers, K. F. Jalal, and J. A. Boyd, "An introduction to sustainable development," Earthscan, 2012. DOI: https://doi.org/10.4324/9781849770477

M. Geissdoerfer, S.N. Morioka, MM de Carvalho, and S. Evans, "Business models and supply chains for the circular economy," Journal of Cleaner Production, vol. 190, pp. 712-721, 2018. https://doi.org/10.1016/j.jclepro.2018.04.159 DOI: https://doi.org/10.1016/j.jclepro.2018.04.159

S. Oktavilia, M. Hapsari, A. Setyadharma, and I. F. S. Wahyuningsum, "Plastic Industry and World Environmental Problems," in E3S Web of Conferences, vol. 202, p. 05020, EDP Sciences, 2020. https://doi.org/10.1051/e3sconf/202020205020 DOI: https://doi.org/10.1051/e3sconf/202020205020

E. Foschi, S. Zanni, and A. Bonoli, "Combining eco-design and LCA as decision-making process to prevent plastics in packaging application," Sustainability, vol. 12, no. 22, p. 9738, Nov. 2020. https://doi.org/10.3390/su12229738 DOI: https://doi.org/10.3390/su12229738

I. Berkane, A. Cabanes, O. Horodytska, I. Aracil, and A. Fullana, "The delamination of metalized multilayer flexible packaging using a microperforation technique," Resources, Conservation and Recycling, vol. 189, p. 106744, 2023. https://doi.org/10.1016/j.resconrec.2022.106744 DOI: https://doi.org/10.1016/j.resconrec.2022.106744

Z. Zhu, W. Liu, S. Ye, and L. Batista, "Packaging design for the circular economy: A systematic review," Sustainable Production and Consumption, vol. 32, pp. 817-832, 2022. https://doi.org/10.1016/j.spc.2022.06.005 DOI: https://doi.org/10.1016/j.spc.2022.06.005

S. Mangaraj, A. Yadav, L. M. Bal, S. K. Dash, and N. K. Mahanti, "Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review," J. Packaging Technol. Res., vol. 3, pp. 77-96, 2019. https://doi.org/10.1007/s41783-018-0049-y DOI: https://doi.org/10.1007/s41783-018-0049-y

T. Mekonnen, P. Mussone, H. Khalil, and D. Bressler, "Progress in bio-based plastics and plasticizing modifications," Journal of Materials Chemistry A, vol. 1, no. 43, pp. 13379-13398, 2013. https://doi.org/10.1039/C3TA12555F DOI: https://doi.org/10.1039/c3ta12555f

V. Siracusa, P. Rocculi, S. Romani, and M. Dalla Rosa, "Biodegradable polymers for food packaging: a review," Trends in Food Science & Technology, vol. 19, no. 12, pp. 634-643, Dec. 2008. https://doi.org/10.1016/j.tifs.2008.07.003 DOI: https://doi.org/10.1016/j.tifs.2008.07.003

W. Abdelmoez, I. Dahab, E. M. Ragab, O. A. Abdelsalam, and A. Mustafa, "Bio- and oxo-degradable plastics: Insights on facts and challenges," Polymers for Advanced Technologies, vol. 32, no. 5, pp. 1981-1996, May 2021. https://doi.org/10.1002/pat.5253 DOI: https://doi.org/10.1002/pat.5253

A. Alhanish and M. Abu Ghalia, "Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review," Biotechnology Progress, vol. 37, no. 6, p. e3210, 2021. https://doi.org/10.1002/btpr.3210 DOI: https://doi.org/10.1002/btpr.3210

R. Spaccini, D. Todisco, M. Drosos, A. Nebbioso, and A. Piccolo, "Decomposition of bio-degradable plastic polymer in a real on-farm composting process," Chemical and Biological Technologies in Agriculture, vol. 3, pp. 1-12, 2016. https://doi.org/10.1186/s40538-016-0053-9 DOI: https://doi.org/10.1186/s40538-016-0053-9

M. Avella, E. Bonadies, E. Martuscelli, and R. Rimedio, "European current standardization for plastic packaging recoverable through composting and biodegradation," Polymer Testing, vol. 20, no. 5, pp. 517-521, 2001. https://doi.org/10.1016/S0142-9418(00)00068-4 DOI: https://doi.org/10.1016/S0142-9418(00)00068-4

S. M. Al-Salem, P. Lettieri, and J. Baeyens, "Recycling and recovery routes of plastic solid waste (PSW): A review," Waste Management, vol. 29, no. 10, pp. 2625-2643, 2009. https://doi.org/10.1016/j.wasman.2009.06.004 DOI: https://doi.org/10.1016/j.wasman.2009.06.004

D. Briassoulis, M. Hiskakis, and E. Babou, "Technical specifications for mechanical recycling of agricultural plastic waste," Waste Management, vol. 33, no. 6, pp. 1516-1530, Jun. 2013. https://doi.org/10.1016/j.wasman.2013.03.004 DOI: https://doi.org/10.1016/j.wasman.2013.03.004

C. Barlow and D. Morgan, "Polymer film packaging for food: An environmental assessment," Resources, Conservation and Recycling, vol. 78, pp. 74-80, 2013. https://doi.org/10.1016/j.resconrec.2013.07.003 DOI: https://doi.org/10.1016/j.resconrec.2013.07.003

J. Hopewell, R. Dvorak, and E. Kosior, "Plastics recycling: challenges and opportunities," Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, no. 1526, pp. 2115-2126, 2009. https://doi.org/10.1098/rstb.2008.0311 DOI: https://doi.org/10.1098/rstb.2008.0311

N. C. Saha, A. K. Ghosh, M. Garg, S. D. Sadhu, "Food Packaging: Materials, Techniques and Environmental Issues," Springer Nature, 2022. https://doi.org/10.1007/978-981-16-4233-3 DOI: https://doi.org/10.1007/978-981-16-4233-3

A. M. Grumezescu and A. M. Holban, Food packaging and preservation, vol. 9, Academic Press, 2017.

V. Frigerio, A. Casson, and S.J. Limbo, "Comparison of different methodological choices in functional unit selection and results implication when assessing food-packaging environmental impact," Journal of Cleaner Production, vol. 396, p. 136527, 2023. https://doi.org/10.1016/j.jclepro.2023.136527 DOI: https://doi.org/10.1016/j.jclepro.2023.136527

N. Bittrich, M. I. R. Mogollón, and R. P. J. Larios-Francia, "Environmental Impact Assessment of Flexible Food Packaging," The International Journal of Environmental Sustainability, vol. 19, no. 1, p. 39, 2022. https://doi.org/10.18848/2325-1077/CGP/v19i01/39-61 DOI: https://doi.org/10.18848/2325-1077/CGP/v19i01/39-61

A. A. Wani, P. Singh, and H.-C. Langowski, "Introduction: Food Packaging Materials," In Food Packaging Materials, CRC Press, 2017, pp. 1-9. https://doi.org/10.1201/9781315374390 DOI: https://doi.org/10.4324/9781315374390-1

T. De Pilli, A. Baiano, G. Lopriore, C. Russo, G. M. Cappelletti, "Sustainable Innovations in Food Packaging," Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-80936-2 DOI: https://doi.org/10.1007/978-3-030-80936-2

T. Anukiruthika, P. Sethupathy, A. Wilson, K. Kashampur, J. A. Moses, C. Anandharamakrishnan, "Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applications," Comprehensive Reviews in Food Science and Food Safety, vol. 19, no. 3, pp. 1156-1186, 2020. https://doi.org/10.1111/1541-4337.12556 DOI: https://doi.org/10.1111/1541-4337.12556

Y. Nasri, M.T. Benaniba, and M.J.M.T.P. Bouquey, "Elaboration and Characterization of Polymers Used in Flexible Multilayer Food Packaging," Materials Today: Proceedings, vol. 53, 2022. https://doi.org/10.1016/j.matpr.2021.12.390 DOI: https://doi.org/10.1016/j.matpr.2021.12.390

T. Dunn, "Manufacturing flexible packaging: materials, machinery, and techniques," William Andrew, 2014.

S. E. Selke and R.J. Hernandez, "Packaging: Polymers in Flexible Packaging," in KH Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, and Patrick Veyssière (eds.), Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 6652-6656. https://doi.org/10.1016/B0-08-043152-6/01176-1 DOI: https://doi.org/10.1016/B0-08-043152-6/01176-1

G. A. Uehara, M. P. França, and S. V. Canevarolo Junior, "Recycling assessment of multilayer flexible packaging films using design of experiments," Polímeros, vol. 25, pp. 371-381, 2015. http://dx.doi.org/10.1590/0104-1428.1965 DOI: https://doi.org/10.1590/0104-1428.1965

A. M. Grumezescu and A. M. Holban (Eds.), Biopolymers for Food Design, vol. 20. Academic Press, 2018.

O. Lopez, M. A. Garcia, M. A. Villar, A. Gentili, M. S. Rodriguez, and L. Albertengo, "Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan," LWT-Food Science and Technology, vol. 57, no. 1, pp. 106-115, 2014. https://doi.org/10.1016/j.lwt.2014.01.024 DOI: https://doi.org/10.1016/j.lwt.2014.01.024

B. M. Trinh, B. P. Chang, and T. H. Mekonnen, "The Barrier Properties of Sustainable Multiphase and Multicomponent Packaging Materials: A review," Progress in Materials Science, vol. 101071, May. 2023. https://doi.org/10.1016/j.pmatsci.2023.101071 DOI: https://doi.org/10.1016/j.pmatsci.2023.101071

S. Sid, R. S. Mor, A. Kishore, and V. S. Sharanagat, "Bio-sourced polymers as alternatives to conventional food packaging materials: A review," Trends in Food Science & Technology, vol. 115, pp. 87-104, 2021. https://doi.org/10.1016/j.tifs.2021.06.026 DOI: https://doi.org/10.1016/j.tifs.2021.06.026

A.-S. Bauer, M. Tacker, I. Uysal-Unalan, R. M. S. Cruz, T. Varzakas, and V. Krauter, "Recyclability and Redesign Challenges in Multilayer Flexible Food Packaging—A Review," Foods, vol. 10, no. 11, p. 2702, Nov. 2021. https://doi.org/10.3390/foods10112702 DOI: https://doi.org/10.3390/foods10112702

C. T. de Mello Soares, M. Ek, E. Östmark, M. Gällstedt, and S, Karlsson, “Recycling of multi-material multilayer plastic packaging: Current trends and future scenarios,” Resources, Conservation and Recycling, vol. 176, p. 105905, 2022. https://doi.org/10.1016/j.resconrec.2021.105905 DOI: https://doi.org/10.1016/j.resconrec.2021.105905

ASTM. L. Agreement, "Standard Guide for Determination of Thickness of Plastic Film Test Specimens." ASTM, vol. 08.03, pp. 7, 2021 https://doi.org/10.1520/D6988-21 DOI: https://doi.org/10.1520/D6988-21

ASTM. L. Agreement, "Standard Test Method for Seal Strength of Flexible Barrier Materials," ASTM, vol. 15.10, pp. 11, 2021. https://doi.org/10.1520/F0088_F0088M-21 DOI: https://doi.org/10.1520/F0088_F0088M-21

ASTM. L. Agreement, "Standard Test Method for Tensile Properties of Thin Plastic Sheeting," ASTM, vol. 08.01, pp. 12, 2018. https://doi.org/10.1520/D0882-18 DOI: https://doi.org/10.1520/D0882-18

ASTM. L. Agreement, "Standard Test Method for Wetting Tension of Polyethylene and Polypropylene Films," ASTM, vol. 08.01, pp. 4, 2018. https://doi.org/10.1520/D2578-09 DOI: https://doi.org/10.1520/D2578-09

ASTM. L. Agreement, "Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor," in ASTM, vol. 15.10, pp. 7, 2017. https://doi.org/10.1520/D3985-17 DOI: https://doi.org/10.1520/D3985-17

ASTM. L. Agreement, "Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor," ASTM, vol. 15.10, pp. 6, 2020. https://doi.org/10.1520/F1249-20 DOI: https://doi.org/10.1520/F1249-20

ASTM. L. Agreement, "Standard Test Method for Determination of Leaks in Flexible Packaging by Bubble Emission," ASTM, vol. 15.10, pp. 3, 2021. https://doi.org/10.1520/D3078-02R21E01 DOI: https://doi.org/10.1520/D3078-02R21E01

Comparación de la estructura trilaminada versus la estructura bilaminada. La variable objetivo es reducir el gramaje del paquete de 82,3 g/m2 a 60,5 g/m2.

Publicado

2024-01-18

Cómo citar

Bernal-Carrillo, J. G., Chiwo-González, F. S., Susunaga-Notario, A. del C., del Ángel–Monroy, M., Arcos–Gutiérrez, H., & Garduño-Olvera, I. E. (2024). Desarrollo y rediseño de envases flexibles bajo criterios de sostenibilidad. REVISTA DE CIENCIAS TECNOLÓGICAS, 7(1), e253. https://doi.org/10.37636/recit.v7n1e253

Artículos más leídos del mismo autor/a