Numerical assessment and characterization of automobile high-voltage cable coverings


  • José Antonio Martínez-González POSGRADO CIATEQ A.C., Centro de Tecnología Avanzada, Circuito de la Industria Poniente Lote 11, Manzana 3, No. 11, Col. Parque Industrial Ex Hacienda Doña Rosa, Lerma de Villada, 52004, Estado de México, México
  • Iván Juárez-Sosa CIATEQ A.C., Centro de Tecnología Avanzada, Av. Manantiales 23-A, Parque Industrial Bernardo Quintana, El Marqués, Querétaro, 76246, México
  • Víctor Hugo Mercado–Lemus CONAHCYT–COMIMSA Corporación Mexicana de Investigación en Materiales, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México
  • Hugo Arcos–Gutiérrez CONAHCYT–CIATEQ A.C., Centro de Tecnología Avanzada, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México
  • Isaías E. Garduño CONAHCYT–CIATEQ A.C., Centro de Tecnología Avanzada, Eje 126 No. 225, San Luis Potosí, 78395, San Luis Potosí, México



Materials characterization, Wire harnesses, High-voltage cables mechanical properties, Automotive industry, CAE analysis, Coverings


In the automotive industry, arranging wire harnesses in assembly plants requires manual work. The stiffness of the high-voltage cable implies that personnel applies sufficient force on the cable to achieve a proper installation. Sometimes, the applied force is not strong enough; thus, the cable is not properly installed, or the personnel gets injured, raising ergonomic concerns that need attention. The challenges arise from the intrinsic cable characteristics such as diameter, copper type, cable strand quantity, first-layer insulator, cable insulator glue, and protective covering. The primary objective of this research is to examine how various factors, such as cable length and protective covering, impact the mechanical properties that influence the assembly of high-voltage cables. The methodology proposed consisted of characterizing the mechanical properties of the high-voltage cables in a cantilever beam test to measure deflection in response to an applied force. The measured properties were contrasted through a Finite Element Analysis of the high-voltage cable. The results validated the initial hypothesis, revealing two key findings. Firstly, the stiffness of cables varies with increasing length. Secondly, cables with tape exhibit greater stiffness than those with conduit and cables without covering, as detailed in the results section. In conclusion, extending cables without attachment points is recommended until the interfaces and environment permit. Furthermore, minimizing tape for cable protection while exploring alternative safeguards can enhance stiffness and facilitate an ergonomic installation assembly under favorable conditions. This study contributes valuable insights for optimizing high-voltage cable installation processes in assembly plants, addressing stiffness concerns through informed choices and design considerations.


Download data is not yet available.


Metrics Loading ...


V. R. Ibáñez, F. A. Pujol, S. G. Ortega, and J. S. Perpiñán, “Collaborative robotics in wire harnesses spot taping process,” Computers in Industry, vol. 125, 2021. DOI: DOI:

A. J. Pearmain and A. G. Clegg, “Insulators,” in Electrical Engineer’s Reference Book, Elsevier, 1993, p. 13/1-13/33. DOI: DOI:

Z. Czech, K. Wilpiszewska, B. Tyliszczak, X. Jiang, Y. Bai, and L. Shao, “Biodegradable self-adhesive tapes with starch carrier,” Int. J. Adhes. Adhes., vol. 44, pp. 195–199, 2013. DOI: DOI:

H. Hosono et al., “Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides,” Sci. Technol. Adv. Mater., vol. 16, no. 3, p. 033503, 2015. DOI: DOI:

X. Yang, J. Liu, N. Lv, and H. Xia, “A review of cable layout design and assembly simulation in virtual environments,” Virtual Reality & Intelligent Hardware, vol. 1, no. 6, pp. 543–557, 2019. DOI: DOI:

H. G. Nguyen, M. Kuhn, and J. Franke, “Manufacturing automation for automotive wiring harnesses,” Procedia CIRP, vol. 97, pp. 379–384, 2021. DOI: DOI:

S. S. Vemula, M. Ji, L. M. Headings, K. Gargesh, S. Soghrati, and M. J. Dapino, “Analytical model for large deflection bending of helically stranded electrical wires,” Int. J. Mech. Sci., vol. 170, no. 105355, p. 105355, 2020. DOI: DOI:

A. Chapanis, Human Factors in Systems Engineering. New York: Wiley & Sons, 1996.

P. J. Sauve, “Case study of manufacturing and installation problems and resolutions - 1993 LH headliner module,” in SAE Technical Paper Series, 1998. DOI: DOI:

Electrical Distribution Steering Committee, “High voltage automotive wiring assembly design,” SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2017. DOI: DOI:

D. L. Abbuhl, “Improved electrical harness performance for commercial and off-road vehicles,” in SAE Technical Paper Series, 2007. DOI: DOI:

P. Mårdberg, J. S. Carlson, R. Bohlin, N. Delfs, S. Gustafsson, and L. Hanson, “Using a formal High-level language to instruct manikins to assemble cables,” Procedia CIRP, vol. 23, pp. 29–34, 2014. DOI: DOI:

“Self-Adhesive Tapes-Measurement of Breaking Strength and Elongation at Break”, Standard BS EN ISO, vol. 29864, 2019.

Cable Standards Committee, “Low voltage battery cable,” SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2020. DOI: DOI:

N. Delfs, R. Bohlin, S. Gustafsson, P. Mårdberg, and J. S. Carlson, “Automatic creation of manikin motions affected by cable forces,” Procedia CIRP, vol. 23, pp. 35–40, 2014. DOI: DOI:

P. Heisler, D. Utsch, M. Kuhn, and J. Franke, “Optimization of wire harness assembly using human–robot-collaboration,” Procedia CIRP, vol. 97, pp. 260–265, 2021. DOI: DOI:

Harness Covering Standards Committee, “Recommended testing methods for physical protection of wiring harnesses,” SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2021. DOI: DOI:

S.-C. Wong and S. Bandaru, “Mechanical properties and strain fatigue lives of insulation polymers,” J. Mater. Sci., vol. 44, no. 2, pp. 365–373, 2009. DOI: DOI:

G. M. Stave and P. H. Wald, Physical and Biological Hazards of the Workplace. Hoboken, NJ: Wiley, 2017. DOI:

D. Xing, L. Lu, Y. Xie, Y. Tang, and K. S. Teh, “Highly flexible and ultra-thin carbon-fabric/Ag/waterborne polyurethane film for ultra-efficient EMI shielding,” Mater. Des., vol. 185, no. 108227, p. 108227, 2020. DOI: DOI:

A. Kutter, L. Guldbrandsen, L. Macketanz, and P. Kerep, Adhesive tape for wrapping elongate material such as especially cable harnesses and method for wrapping. (U.S. Patent No. US11292941B2) U.S. Patent and Trademark Office, 2019.

R. M. Reyes, J. de la Riva, A. Maldonado, A. Woocay, and R. de la O, “Association between human error and occupational accidents’ contributing factors for hand injuries in the automotive manufacturing industry,” Procedia Manuf., vol. 3, pp. 6498–6504, 2015. DOI: DOI:

F. Zappe, C. Lodde, and H. Mauksch, Adhesive tape and its use in wrapping a wire harness Granted Paten. EP 0647691 B1 1998-04-08 European Patent Office.

Cable Standards Committee, “Automobile and Motor Coach Wiring,” SAE International, 400 Commonwealth Drive, Warrendale, PA, United States, 2017. DOI: DOI:

J. Tilindis and V. Kleiza, “The effect of learning factors due to low volume order fluctuations in the automotive wiring harness production,” Procedia CIRP, vol. 19, pp. 129–134, 2014. DOI: DOI:

J. Trommnau, J. Kühnle, J. Siegert, R. Inderka, and T. Bauernhansl, “Overview of the state of the art in the production process of automotive wire harnesses, current research and future trends,” Procedia CIRP, vol. 81, pp. 387–392, 2019. DOI: DOI:

M. Kobayashi, Y. Hirano, and M. Higashi, “Optimization of assembly processes of an automobile wire harness,” Comput. Aided Des. Appl., vol. 11, no. 3, pp. 305–311, 2014. DOI: DOI:

H. Czichos, T. Saito, and L. Smith, Eds., Springer handbook of materials measurement methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. DOI: DOI:

A. B. M. Abdullah, J. A. Rice, H. R. Hamilton, and G. R. Consolazio, “An investigation on stressing and breakage response of a prestressing strand using an efficient finite element model,” Eng. Struct., vol. 123, pp. 213–224, 2016. DOI: DOI:

C. Fischer, J. Bonig, J. Franke, M. Lusic, and R. Hornfeck, “Worker information system to support during complex and exhausting assembly of high-voltage harness,” in 2015 5th International Electric Drives Production Conference (EDPC), 2015. DOI: DOI:

P. Heisler, M. Kuhn, R. Sus-Wolf, and J. Franke, “Innovative solutions for the covering process in the manufacturing of wire harnesses to increase the automation degree,” in 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), 2020. DOI: DOI:

S. Olbrich and J. Lackinger, “Manufacturing Processes of automotive high-voltage wire harnesses: State of the art, current challenges and fields of action to reach a higher level of automation,” Procedia CIRP, vol. 107, pp. 653–660, 2022. DOI: DOI:

E. Taghipour et al., “Characterization and computational modeling of electrical wires and wire bundles subject to bending loads,” Int. J. Mech. Sci., vol. 140, pp. 211–227, 2018. DOI: DOI:

M. Goelke, (2021). Simulation Revolution with Altair SimSolid. Altair Engineering, [Online]. Available: [Accessed: 12-Mar-2024].

V. Apanovitch, Using Altair SIMSOLID technology overview, [Online]. Available: [Accessed: 12-Mar-2024].

L. Rouleau, R. Pirk, B. Pluymers, and W. Desmet, “Characterization and modeling of the viscoelastic behavior of a self-adhesive rubber using dynamic mechanical analysis tests,” J. Aerosp. Technol. Manag., vol. 7, no. 2, pp. 200–208, 2015. DOI: DOI:

C. Kraus, T. Falk, R. Mauermann, and W.-G. Drossel, “Development of a new self-flaring rivet geometry using finite element method and design of experiments,” Procedia Manuf., vol. 47, pp. 383–388, 2020. DOI: DOI:

E. S. Annibale, K. Dreßler, O. Hermanns, J. Linn, and C. Zemerli, “Virtual design and dynamical simulation of flexible cables, hoses, and wires,” in SAE Technical Paper Series, 2014. DOI: DOI:

Numerical simulation of the beam deflection at SIMSOLID software. It presents the maximum displacement magnitude for the diverse cable lengths (a) 100 mm, (b) 200 mm, and (c) 300 mm.



How to Cite

Martínez-González, J. A., Juárez-Sosa, I., Mercado–Lemus, V. H., Arcos–Gutiérrez, H., & Garduño, I. E. (2024). Numerical assessment and characterization of automobile high-voltage cable coverings. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 7(1), e335.

Most read articles by the same author(s)