Characterization of a new design of temperature sensor based on plasmon resonance effect


  • Miguel Ángel Ponce Camacho CETYS University CETYS Calzada s / n, Col. Rivera, C. P. 21259 Mexicali, Baja California, Mexico
  • Mayra Alejandra Heredia Aguilar CETYS University CETYS Calzada s / n, Col. Rivera, C. P. 21259 Mexicali, Baja California, Mexico
  • Josué Aarón López Leyva CETYS University CETYS Calzada s / n, Col. Rivera, C. P. 21259 Mexicali, Baja California, Mexico
  • Casemiro Oliveira Leiva Science Center Exatas e Naturais, Universidade Federal Rural do Semi-Arid, Brazil



Temperature sensor, Gold grating surface plasmon resonance, Macroscopic scale.


In this work a study of the effect from temperature on surface plasmon polariton (SPP) is proposed. On a macroscopic scale, as a consequence in the variation of temperature, materials show dilation or contraction. Thus, based on SPP effect, using the gold grating surface plasmon resonance configuration, a novel temperature sensor design is characterized.


Download data is not yet available.


Metrics Loading ...


M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, 1st ed. Dordrecht: Springer Netherlands, 2007. DOI:

W. Knoll, "Interfaces and Thin Films as Seen by Bound Electromagnetic Waves," Annu. Rev. Phys. Chem., vol. 49, no. 1, pp. 569-638, Oct. 1998. DOI:

M. Malmqvist, "Biospecific interaction analysis using biosensor technology," Nature, vol. 361, no. 6408, pp. 186-187, 1993. DOI:

R. Narayanaswamy and O. S. Wolfbeis, Optical Sensors: Industrial Environmental and Diagnostic Applications. Springer Berlin Heidelberg, 2013.

F.-C. Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron., vol. 20, no. 3, pp. 633-642, 2004. DOI:

R. Berndt, J. K. Gimzewski, and P. Johansson, "Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces," Phys. Rev. Lett., vol. 67, no. 27, pp. 3796-3799, Dec. 1991. DOI:

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced Conversion of Silver Nanospheres to Nanoprisms," Science (80)., vol. 294, no. 5548, pp. 1901 LP - 1903, Nov. 2001. DOI:

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation," Nature, vol. 425, no. 6957, pp. 487-490, 2003. DOI:

B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature, vol. 332, no. 6165, pp. 615-617, 1988. DOI:

G. Flätgen, K. Krischer, B. Pettinger, K. Doblhofer, H. Junkes, and G. Ertl, "Two-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy," Science (80)., vol. 269, no. 5224, pp. 668 LP - 671, Aug. 1995. DOI:

J. G. Gordon and S. Ernst, "Surface plasmons as a probe of the electrochemical interface," Surf. Sci., vol. 101, no. 1, pp. 499-506, 1980. DOI:

B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, vol. 4, pp. 299-304, 1983. DOI:

S. C. Schuster, R. V Swanson, L. A. Alex, R. B. Bourret, and M. I. Simon, "Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance," Nature, vol. 365, no. 6444, pp. 343-347, 1993. DOI:

P. Schuck, "Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors," Curr. Opin. Biotechnol., vol. 8, no. 4, pp. 498-502, 1997. DOI:

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B Chem., vol. 54, no. 1, pp. 3-15, 1999. DOI:

A. R. Mendelsohn and R. Brent, "Protein Interaction Methods-Toward an Endgame," Science (80)., vol. 284, no. 5422, pp. 1948 LP - 1950, Jun. 1999. DOI:

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, "Surface plasmon resonance analysis of dynamic biological interactions with biomaterials," Biomaterials, vol. 21, no. 18, pp. 1823-1835, 2000. DOI:

J. Pendry, "Playing Tricks with Light," Science (80-. )., vol. 285, no. 5434, pp. 1687 LP - 1688, Sep. 1999. DOI:

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization Model for the Plasmon Response of Complex Nanostructures," Science (80-. )., vol. 302, no. 5644, pp. 419 LP - 422, Oct. 2003. DOI:

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950, pp. 824-830, 2003. DOI:

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett., vol. 86, no. 18, p. 181108, Apr. 2005. DOI:

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528-539, 2003. DOI:

J. Zhang, L. Zhang, and W. Xu, "Surface plasmon polaritons: physics and applications," J. Phys. D. Appl. Phys., vol. 45, no. 11, p. 113001, 2012. DOI:

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris. Plasmonic films can easily be better: Rules and recipes, ACS Photonics 2, 326-333, 2015. DOI:

S. Babar and J. H. Weaver. Optical constants of Cu, Ag, and Au revisited, Appl. Opt. 54, 477-481, 2015. DOI:

F. Lemarchand, private communications (2013). Index determination is performed using method explained in: L. Gao, F. Lemarchand, and M. Lequime. Comparison of different dispersion models for single layer optical thin film index determination, Thin Solid Films 520, 501-509 (2011). DOI:

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke. Optical dielectric function of gold, Phys Rev. B 86, 235147, 2012. DOI:

W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data38, 1013-1092, 2009. DOI:

Linear polarizer working scheme. Linear polarizer working scheme. Esquema de funcionamiento del polarizador lineal. SCHEMA of the linear polarizer. ESQUEMA del polarizador lineal.



How to Cite

Ponce Camacho, M. Ángel, Heredia Aguilar, M. A., López Leyva, J. A., & Oliveira Leiva, C. (2019). Characterization of a new design of temperature sensor based on plasmon resonance effect. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 2(3), 98–105.



Research articles