Real-time pH monitoring system based on ZigBee technology for shrimp farms, case study: San Felipe B.C.

Authors

  • German Rodríguez Ávila Departamento de sistemas y computación, Instituto Tecnológico de Mexicali, Av., Tecnológico S/N CP 21376 colonia Elías Calles, Mexicali, Baja California, México. https://orcid.org/0000-0002-8927-0124
  • Rafael Iván Ayala Figueroa Departamento de Eléctrica Electrónica, Instituto Tecnológico de Mexicali, Av., Tecnológico S/N CP 21376 colonia Elías Calles, Mexicali, Baja California, México. https://orcid.org/0000-0001-9988-1626
  • Veronica Quintero Rosas Departamento de sistemas y computación, Instituto Tecnológico de Mexicali, Av., Tecnológico S/N CP 21376 colonia Elías Calles, Mexicali, Baja California, México. https://orcid.org/0000-0002-5290-4840
  • Vidblain Amaro Ortega Departamento de sistemas y computación, Instituto Tecnológico de Mexicali, Av., Tecnológico S/N CP 21376 colonia Elías Calles, Mexicali, Baja California, México. https://orcid.org/0000-0002-3199-762X
  • Mario Alberto Camarillo Ramos Departamento de Eléctrica Electrónica, Instituto Tecnológico de Mexicali, Av., Tecnológico S/N CP 21376 colonia Elías Calles, Mexicali, Baja California, México. https://orcid.org/0000-0002-8104-8641
  • Marisela Ponce Millanes Departamento de Eléctrica Electrónica, Instituto Tecnológico de Mexicali, Av., Tecnológico S/N CP 21376 colonia Elías Calles, Mexicali, Baja California, México

DOI:

https://doi.org/10.37636/recit.v34206212

Keywords:

ZigBee, Aquaculture, Wireless sensor networks, Real time

Abstract

A solution is presented in the monitoring of water pH conditions to reduce labor and mortality in shrimp crops in the port of San Felipe B.C. A wireless sensor network based on ZigBee was used to monitor the critical conditions and all the control processes where they were carried out with the help of a series of PIC16F886 microcontrollers including real-time C-code. This system can collect and presenting data in a local graphical user interface (GUI). It also allows the user to obtain updated information of the pH sensor via the web and in an Android-based mobile application, through Internet connectivity or at any time by means of alerts that the user receives to the email. In this way, the system minimizes the negative effects caused by sudden changes in the pH value of water in shrimp, reduces farm labor. Because of that, the proposed system saves the cost of hiring labor and the use of electricity. The design is low cost that will work best for small to medium sized aquaculture operations, since it does not require any modification of the pond at all.

Downloads

Download data is not yet available.

References

L. H. N. Kha, T. Hieu, "A versatile, low power on monitoring and control system for shrimp farms based on NI myRIOand ZigBee network," 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, 2015, pp. 0282-0287, https://ieeexplore.ieee.org/document/7259476/

S. Han, Y. Kang, K. Park and M. Jang, "Design of Environment Monitoring System for Aquaculture Farms," 2007 Frontiers in the Convergence of Bioscience and Information Technologies, Jeju City, 2007, pp. 889-893, https://ieeexplore.ieee.org/document/4524224 DOI: https://doi.org/10.1109/FBIT.2007.77

H. Lemonnier, E. Bernard, E. Boglio and C. Goarant. “Influence of sediment characteristics on shrimp physiology: pH as principal effect”, Aquaculture, Vol. 240 (1–4), Pp. 297-312, 2004 https://doi.org/10.1016/j.aquaculture.2004.07.001 DOI: https://doi.org/10.1016/j.aquaculture.2004.07.001

C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment," Journal of the ACM, vol. 20, pp. 46-61, 1973. https://doi.org/10.1145/321738.321743 DOI: https://doi.org/10.1145/321738.321743

N. C. Audsley, A. Burns, M. F. Richarson, and A. J. Wellings, "Hard Real-Time Scheduling: The Deadline Monotonic Approach," in Proceedings 8th IEEE Workshop on Real-Time Operating Systems and Software, Atlanta, GA, USA 1991. https://doi.org/10.1016/S1474-6670(17)51283-5 DOI: https://doi.org/10.1016/S1474-6670(17)51283-5

FAO en México. 2016. Visible body: Acuicultura en México crecerá más de 50% en 2025. Recuperado de https://www.fao.org/mexico/noticias/detail-vents/es/c/425841/?fbclid=IwAR3sXtm8eW9-MBC1W0Mnrkt8LB5qoM8bKioWBeD8D0HtSQEVFgOUtwxTM.

N. N. Tang, "Automated monitoring and control system for shrimp farms based on embedded system and wireless sensor network," 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, 2015, pp. 1-5, https://ieeexplore.ieee.org/document/7226111/

J. R. S. Charoenpanyasak, W. Suntiamorntut, "Smart shrimp hatchery using Mikros platform," 2011 4th Joint IFIP Wireless and Mobile Networking Conference (WMNC 2011), Toulouse, 2011, pp. 1-5, https://ieeexplore.ieee.org/document/6097227 DOI: https://doi.org/10.1109/WMNC.2011.6097227

A. Dementyev, S. Hodges S. Taylor, J. Smith, "Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario," 2013 IEEE International Wireless Symposium (IWS), Beijing, 2013, pp. 1-4, https://ieeexplore.ieee.org/document/6616827 DOI: https://doi.org/10.1109/IEEE-IWS.2013.6616827

V. Mendoza, “Así es como México siembra y cosecha camarones en Sinaloa”, 2018. Forbes. Recuperado: https://www.forbes.com.mx/camarones-de-granja-vencen-captura-tradicional/

General diagram of the pH monitoring system

Published

2020-12-24

How to Cite

Rodríguez Ávila, G., Ayala Figueroa, R. I., Quintero Rosas, V., Amaro Ortega, V., Camarillo Ramos, M. A., & Ponce Millanes, M. (2020). Real-time pH monitoring system based on ZigBee technology for shrimp farms, case study: San Felipe B.C. Revista De Ciencias Tecnológicas, 3(4), 206–212. https://doi.org/10.37636/recit.v34206212

Issue

Section

Research articles

Categories

Most read articles by the same author(s)