Instrumental system to estimate the turbuce ratio of the air flow in a rigid grid, based on its reduced dynamic order transfer functions matrix

Authors

  • Ana Marell Arteaga Martínez Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México. Universidad TecMilenio, Fudamental Science Department, Camino Real a Humilpan, Corregidora, Querétaro.
  • Eloy Edmundo Rodríguez Vázquez Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México. Universidad Anáhuac Querétaro, School of Engineering, Quantitative Methods and Fundamental Science, Circuito Universidades, El Marques, Querétaro.
  • Maria Elizabeth Rodríguez Ibarra Engineering Center for Industrial Development (CIDESI), National Laboratory for Cooling Technology Research (LaNITeF), Av. Pie de la Cuesta 207, Desarrollo San Pablo, Querétaro, 76250 México. Universidad TecMilenio, Fudamental Science Department, Camino Real a Humilpan, Corregidora, Querétaro.
  • Helen Janeth Zuñiga Osorio Universidad Anáhuac Querétaro, School of Engineering, Quantitative Methods and Fundamental Science, Circuito Universidades, El Marques, Querétaro.
  • Luis Álvaro Montoya Santiyanes Universidad TecMilenio, Fudamental Science Department, Camino Real a Humilpan, Corregidora, Querétaro. Universidad Politécnica de Querétaro, School of Engineering, Carretera a los Cues, El Marques, Querétaro.

DOI:

https://doi.org/10.37636/recit.v32106119

Keywords:

Vibrational modal model, Laminar and turbulent air flow, Reduce order transfer functions matrix.

Abstract

In words of the cooling technology experts, there is at least a 20-year gap between the nowadays vapor compression based technology for refrigeration, cooling and HVAC, and what we have defined as alternatives technologies. There is also a big amount of scientific effort to endow this vapor compression technology with more degrees of freedom to implement more accurate energy optimization algorithms. In this way, as a first step to get more robust control algorithms in heat interchangers of condenser and evaporators units, authors have developed some instrumentation systems to analyze the behavior of the air flowing through the rigid blades of this kind of devices. This previous effort has been before reported as a complete vibrational modal model for the concerned rigid grid, however; due to its 16 spatially degrees of freedom and its 16th dynamic order, its model re-solution on line while the heat interchanger unit is working is almost impossible with a normal computer. Therefore, to get an algorithm with less computational resource consumption and with the same accuracy than the complete modal model, authors have reported in this document, the implementation of a reduced dynamical order transfer function matrix model. Reduction that as well as it is described is based on the poles averaging and zeros selection, from the set experimental graphs of the frequency spectral magnitude from a set of impact tests (experimental modal testing) performed at LaNITeF-CIDESI. Numerical prediction of the transfer function matrix from the dynamic reduced order model have been validated with the experimental spectral. Based on the hypothesis, that due to the incident angle, the resonance spectral vibration is excited by the laminar air flow, while the air flow turbulence does not excite the resonance vibrational spectral, the turbulence ration from the incident air flow has been analyzed from a wind tunnel test. As the main conclusion, authors have developed and validated a new instrumentation system to analyze the turbulence ratio of the air flow incident in a rigid grid, which can be part of a condenser or evaporator unit from a conventional cooling system, by implementing the concerned transfer functions matrix model with reduced dynamic order.

Downloads

Download data is not yet available.

References

M. Ponmurugan, M. Ravikumar, and A. Sundaramahalingam, “A review on utilization of waste heat from domestic refrigerator,” Int. Conf. Mater. Manuf. Mach. 2019, vol. 2128, no. May 2015, p. 050015, 2019. https://doi.org/10.1063/1.5117987 DOI: https://doi.org/10.1063/1.5117987

Global electricity prices in 2018, by selected country (in U.S. dollars per kilowatt hour). https://www.statista.com/statistics/263263/electricity-prices-in-selected-countries/.

G. D. Librado, L. Alvaro, M. Santiyanes, and H. G. Cuatzin, “Dynamic Behavior Model for Cooling System Based on Vapor Compression Experimental Analysis and Simulation Validation Grounded on a Reduced Order Differential Equation with Few Degrees of Freedom,” in ICONS 2018: The Thirteenth International Conference on Systems, 2018, no. c, pp. 57–62. https://www.thinkmind.org/download.php?articleid=icons_2018_4_20_48003

K. Talukdar, “Modeling of Solar Photovoltaic Assisted Vapor Absorption Refrigeration System for Running an Ice Factory,” IOSR J. Mech. Civ. Eng., vol. 14, no. 03, pp. 60–69, 2017. https://doi.org/10.9790/1684-1403016069 DOI: https://doi.org/10.9790/1684-1403016069

The Vapor Compression Refriferation Cycle, Step by Step, Araner, February 2018, https://www.araner.com/blog/vapor-compression-refrigeration-cycle/

M. Ahmad, A. Bontemps, H. Sallée, and D. Quenard, “Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material,” Energy Build., vol. 38, no. 6, pp. 673–681, 2006. https://doi.org/10.1016/j.enbuild.2005.11.002 DOI: https://doi.org/10.1016/j.enbuild.2005.11.002

H. Binici, O. Aksogan, M. N. Bodur, E. Akca, and S. Kapur, “Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials,” Constr. Build. Mater., vol. 21, no. 4, pp. 901–906, 2007. https://doi.org/10.1016/j.conbuildmat.2005.11.004 DOI: https://doi.org/10.1016/j.conbuildmat.2005.11.004

S. L. Garrett, J. A. Adeff, T. J. Hofler, S. L. Garrett, J. A. Adeff, and T. J. Hoflers, “Thermoacoustics refrigerator for space application,” J. Thermophys. Heat Transf., vol. 7, no. 4, pp. 595–599, 1993. https://doi.org/10.2514/3.466 DOI: https://doi.org/10.2514/3.466

P. Gorria, J. L. Sánchez Llamazares, P. Álvarez, M. J. Pérez, J. Sánchez Marcos, and J. A. Blanco, “Relative cooling power enhancement in magneto-caloric nanostructured Pr2Fe17,” J. Phys. D. Appl. Phys., vol. 41, no. 19, pp. 1–5, 2008. https://doi.org/10.1088/0022-3727/41/19/192003 DOI: https://doi.org/10.1088/0022-3727/41/19/192003

T. Moulton and G. K. Ananthasuresh, “Micromechanical devices with embedded electro-thermal-compliant actuation,” Sensors Actuators, A Phys., vol. 90, no. 1–2, pp. 38–48, 2001. https://doi.org/10.1016/S0924-4247(00)00563-X. DOI: https://doi.org/10.1016/S0924-4247(00)00563-X

M. S. Layton and J. O’Hagan, Comparison of Alternate Cooling Technologies for California Power Plants:Economic, Environmental and Other Tradeoffs, 1st ed., vol. 2. Sacramento, California, 2002. http://large.stanford.edu/courses/2018/ph241/duboc2/docs/AR-1167.pdf.

2do Seminario Internacional del LaNITeF 2017, Publicaciones del Laboratorio Nacional de Investigación en Tecnologías del Frio, ISBN: 2594-2142X, Vol. 1, No. 2, 2017. https://www.cidesi.com/lanitef/index.html.

M. Sakawa and T. Matsui, “Heat load prediction in district heating and cooling systems through recurrent neural networks,” Int. J. Oper. Res., vol. 23, no. 3, pp. 284–300, 2015. https://doi.org/10.1504/IJOR.2015.069623 DOI: https://doi.org/10.1504/IJOR.2015.069623

A. Marwanto and S. Alifah, “Control of Air Cooling System Based on Fuzzy Logic,” J. Telemat. Informatics, vol. 6, no. 1, pp. 63–70, 2018. https://doi.org/10.12928/jti.v6i1.

E. E. Rodríguez-Vázquez, “Revista Internacional de Investigación e Innovación Tecnológica,” Rev. Int. Investig. e Innovación Tecnológica, vol. 5, no. 30, pp. 1–9, 2018. https://doi.org/10.19053/20278306.v9.n2.2019.9154 DOI: https://doi.org/10.19053/20278306.v9.n2.2019.9154

M. Stadler, W. Krause, M. Sonnenschein, and U. Vogel, “Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices,” Environ. Model. Softw., vol. 24, no. 2, pp. 285–295, 2009. https://doi.org/10.1016/j.envsoft.2008.07.003. DOI: https://doi.org/10.1016/j.envsoft.2008.07.003

H. J. Zúñiga, E. E. Rodríguez, L. A. Montoya, I. Mejia, C. Sandoval, “Vibrational modal model for a compressor blade,” Rev. Int. Investig. e Innovación Tecnológica, vol. 7, no. 41, pp. 1–17, 2019. https://riiit.com.mx/apps/site/idem.php?module=Catalog&action=ViewItem&id=5039&item_id=85353&id=5039.

G. Xu, J. Zhou, H. Geng, M. Lu, and W. Cheng, “Unbalance response analysis of the circumferential tie-rod combined rotor considering different support,” in 2014 IEEE International Conference on Mechatronics and Automation, 2014, pp. 1323–1328. https://doi.org/10.1109/ICMA.2014.6885891 DOI: https://doi.org/10.1109/ICMA.2014.6885891

A. Saxena, M. Chouksey, and A. Parey, “Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response characteristics of geared rotor system,” Mech. Mach. Theory, vol. 107, no. September 2016, pp. 261–273, 2017. https://doi.org/10.1016/j.mechmachtheory.2016.10.006 DOI: https://doi.org/10.1016/j.mechmachtheory.2016.10.006

B. Hu and H. Gharavi, “A Fast-Recursive Algorithm for Spectrum Tracking in Power Grid Systems,” IEEE Trans. Smart Grid, vol. 10, p. 10.1109/TSG.2018.2813881, 2018. https://doi.org/10.1109/TSG.2018.2813881. DOI: https://doi.org/10.1109/TSG.2018.2813881

Spectral response of the transfer function magnitude “G_((1,1),(1,3) )”.

Published

2020-06-30

How to Cite

Arteaga Martínez, A. M., Rodríguez Vázquez, E. E., Rodríguez Ibarra, M. E., Zuñiga Osorio, H. J., & Montoya Santiyanes, L. Álvaro. (2020). Instrumental system to estimate the turbuce ratio of the air flow in a rigid grid, based on its reduced dynamic order transfer functions matrix. Revista De Ciencias Tecnológicas, 3(2), 106–119. https://doi.org/10.37636/recit.v32106119

Issue

Section

Research articles

Categories

Most read articles by the same author(s)