Electrochemical Sensor Based on TiO2 Nanoflowers for the Determination of Nitrobenzene
DOI:
https://doi.org/10.37636/recit.v112326Keywords:
TiO2, Nanoflower, Sensor, Electrochemical, NitrobenzeneAbstract
Nitrobenzene (NB) is a volatile organic compound (VOCs) produced in large quantities for industrial use, is highly toxic and repeated exposure can cause severe damage to human health. The traditional methods for the determination of NB reach concentrations of parts per million, but this pollutant in water is below these concentrations. Due to this it is important the development of new sensors for the determination of NB in water. In this work an electrochemical sensor was developed for the determination of NB with single crystal rutile TiO2 nanorods. Synthesis parameters were modified to obtain desired morphologies and were characterized by Raman spectroscopy, SEM, EDS and electrochemical techniques. Quantification of NB was performed by cyclic voltammetry (VC). The sensitivity and detection interval of the probes increase with increasing the opening of the TiO2 nanoflowers, reaching concentrations below the parts per billion. As conclusion of this work is that the electrochemical properties in the detection of NB by TiO2 nanoflowers are directly related to the conditions of synthesis used. The findings of this study have a number of valuable implications for future studies of VOC monitoring.Downloads
References
Pérez S. y col. "Photochemical degradation of nitrobenzene by S2O8-2 ions and UV radiation" Rev. Int. Contam.´ Ambient. Vol. 32, 2, pp. 227-236, 2016.. https://doi.org/10.20937/RICA.2016.32.02.08 DOI: https://doi.org/10.20937/RICA.2016.32.02.08
EPA, Nitroorganic and Nitroamines by High Performance Liquid Chromatography (HPLC), 8300 Method, USA, 1994. https://www.epa.gov/sites/production/files/2015-12/documents/8330a.pdf
Lara A. y col. "Critical comparison of automated purge and trap and solid-phase microextraction for routine determination of volatile organic compounds in drinking waters by GC-MS", Talanta. ELSEVIER, Vol. 74, 5, pp. 1455- 1462, 2008. https://doi.org/10.1016/j.talanta.2007.09.036 DOI: https://doi.org/10.1016/j.talanta.2007.09.036
Sedghi R. y col. "Synthesis, characterization, and application of poly (acrylamide-co-mehylnbisacrylamide nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions", J. Hazard. Mater. ELSEVIER, 285, pp. 109-116, 2015. https://doi.org/10.1016/j.jhazmat.2014.11.049 DOI: https://doi.org/10.1016/j.jhazmat.2014.11.049
Liu Gang y col. "Titanium Dioxide Crystals with Tailored Facets", Chemical Reviews. ACS Publications, vol. 114, 19, 9559-9612, 2014 https://doi.org/10.1021/cr400621z DOI: https://doi.org/10.1021/cr400621z
Published
How to Cite
License
Copyright (c) 2018 Ruiz-Ramírez Mirza Mariela, Hinostroza-Mojarro Juan José, Silva-Carrillo Carolina, Trujillo-Navarrete Balter, Félix-Navarro Rosa María, Reynoso-Soto Edgar Alonso
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).