Determination of faults severity in power transformers immersed in mineral insulated oil based exclusively on the DGA and by evaluating the NEI

Authors

  • Bethsaida Adriana Gutiérrez Chávez Posgrado Maestría en Manufactura Avanzada, Centro de Tecnología Avanzada (CIATEQ A.C.), Unidad Estado de México. Circuito de la Industria Pte. Lte.11. Mza.3 No. 11. Parque Industrial Ex hacienda Doña Rosa, Lerma, Estado de México. CP 52004. México
  • Georgina Montes de Oca-Ramírez Especialidad de Plásticos y Materiales Avanzados, Centro de Tecnología Avanzada (CIATEQ A.C.), Unidad Estado de México. Circuito de la Industria Pte. Lte.11. Mza.3 No. 11. Parque Industrial Ex hacienda Doña Rosa, Lerma, Estado de México. CP 52004. México https://orcid.org/0000-0003-0115-9964

DOI:

https://doi.org/10.37636/recit.v43208223

Keywords:

Power transformer, Mineral insulating oil, Dissolved gas analysis (DGA), Normalized energy intensity (NEI), Enthalpy

Abstract

The power transformer is a major part of an electric system, it is necessary to know their condition in order to solve incipient faults, DGA technique in mineral insulating oil is widely used to diagnose the equipment, however, is not easy to interpret the results because it is hard to know the severity of the detected fault. Recent studies mention a way to evaluate it called “Normalized Energy Intensity” (Jakob & Dukarm, 2015) which incorporates the thermodynamic theory to the decomposition of mineral insulated oil. In this article, the analysis of 24 power transformers operating under different conditions was considered to do a comparative study between Dissolved Gas Analysis and Normalized Energy Intensity interpretation techniques in order to evaluate the severity of the detected faults. The obtained result was a more accurate diagnosis of the transformers before presenting major failures. It was determined that the interpretative technique NEI is more sensitive to DGA, allowing that the quantification of the transformer fault severity to be closer to the insulated mineral oil real condition degradation.

Downloads

Download data is not yet available.

References

Zeng, B., Guo, J., Zhang, F., Zhu, W., Xiao, Z., Huang, S. y Fan, P. (2020). Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition. Energies, 13(2), 422. https://doi.org/10.3390/en13020422 DOI: https://doi.org/10.3390/en13020422

K. Reddy, "Latest Trends In Use Of Transformer Oils", International Journal of Engineering Trends and Technology, vol. 67, n.º 7, pp. 37-39, julio de 2019. Accedido el 20 de agosto de 2021. https://doi.org/10.14445/22315381/ijett-v67i7p207 DOI: https://doi.org/10.14445/22315381/IJETT-V67I7P207

M. Wang, A. J. Vandermaar y K. D. Srivastava, "Review of condition assessment of power transformers in service", IEEE Electrical Insulation Magazine, vol. 18, n.º 6, pp. 12–25, noviembre de 2002. Accedido el 20 de septiembre de 2021. [En línea]. Disponible: https://doi.org/10.1109/mei.2002.1161455 DOI: https://doi.org/10.1109/MEI.2002.1161455

N. K. Dhote y J. B. Helonde, "Improvement in Transformer Diagnosis by DGA using Fuzzy Logic", Journal of Electrical Engineering and Technology, vol. 9, n.º 2, pp. 615–621, marzo de 2014. Accedido el 20 de septiembre de 2021. [En línea]. Disponible: https://doi.org/10.5370/jeet.2014.9.2.615 DOI: https://doi.org/10.5370/JEET.2014.9.2.615

A. Abu-Siada y S. Islam, "A Novel Online Technique to Detect Power Transformer Winding Faults", IEEE Transactions on Power Delivery, vol. 27, n.º 2, pp. 849-857, abril de 2012. Accedido el 20 de agosto de 2021. https://doi.org/10.1109/TPWRD.2011.2180932 DOI: https://doi.org/10.1109/TPWRD.2011.2180932

Cruz, V. G. M., Costa, A. L. H. y Paredes, M. L. L. (2015). SIMULATION OF THERMAL DECOMPOSITION OF MINERAL INSULATING OIL. Brazilian Journal of Chemical Engineering, 32(3), 781-794. https://doi.org/10.1590/0104-6632.20150323s00003531 DOI: https://doi.org/10.1590/0104-6632.20150323s00003531

"Guide for the sampling of gases and of oil-filled electrical equipment and for analysis of free and dissolved gases". IEC Standard 60567, 2005.

ASTM D3612-02(2017), Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography, ASTM International, West Conshohocken, PA, 2017, www.astm.org

Mharakurwa, E. T., Nyakoe, G. N. y Akumu, A. O. (2019). Power Transformer Fault Severity Estimation Based on Dissolved Gas Analysis and Energy of Fault Formation Technique. Journal of Electrical and Computer Engineering, 2019, 1-10. https://doi.org/10.1155/2019/9674054 DOI: https://doi.org/10.1155/2019/9674054

"IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers," in IEEE Std C57.104-2008 (Revision of IEEE Std C57.104-1991), vol., no., pp.1-36, 2 Feb. 2009, https://doi.org/10.1109/IEEESTD.2009.4776518 DOI: https://doi.org/10.1109/IEEESTD.2009.4776518

Londo, Leonidha & Celo, Marialis & Bualoti, Rajmonda. (2015). Assessment of Transformer Condition using the Improve Key Gas Methods. International Journal of Engineering Research & Technology. 4. 48-55. http://dx.doi.org/10.17577/IJERTV4IS050158

"IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers," in IEEE Std C57.104-2019 (Revision of IEEE Std C57.104-2008), vol., no., pp.1-98, 1 Nov. 2019, https://doi.org/10.1109/IEEESTD.2019.8890040 DOI: https://doi.org/10.1109/IEEESTD.2019.8890040

Ghoneim, S. S. M. y Taha, I. B. M. (2016). A new approach of DGA interpretation technique for transformer fault diagnosis. International Journal of Electrical Power & Energy Systems, 81, 265-274. https://doi.org/10.1016/j.ijepes.2016.02.018 DOI: https://doi.org/10.1016/j.ijepes.2016.02.018

S. A. Ward et al., "Towards Precise Interpretation of Oil Transformers via Novel Combined Techniques Based on DGA and Partial Discharge Sensors", Sensors, vol. 21, n.º 6, p. 2223, marzo de 2021. Accedido el 20 de septiembre de 2021. [En línea]. Disponible: https://doi.org/10.3390/s21062223 DOI: https://doi.org/10.3390/s21062223

Ghoneim, S. S. M. (2018). Intelligent prediction of transformer faults and severities based on dissolved gas analysis integrated with thermodynamics theory. IET Science, Measurement & Technology, 12(3), 388-394. https://doi.org/10.1049/iet-smt.2017.0450 DOI: https://doi.org/10.1049/iet-smt.2017.0450

Jakob, F., Noble, P. y Dukarm, J. J. (2012). A Thermodynamic Approach to Evaluation of the Severity of Transformer Faults. IEEE Transactions on Power Delivery, 27(2), 554-559. https://doi.org/10.1109/tpwrd.2011.2175950 DOI: https://doi.org/10.1109/TPWRD.2011.2175950

Sun, H.-C., Huang, Y.-C. y Huang, C.- M. (2012). A Review of Dissolved Gas Analysis in Power Transformers. Energy Procedia, 14, 1220-1225. https://doi.org/10.1016/j.egypro.2011.12.1079 DOI: https://doi.org/10.1016/j.egypro.2011.12.1079

Shirai, M., Shimoji, S. y Ishii, T. (1977). Thermodynamic Study on the Thermal Decomposition of Insulating Oil. IEEE Transactions on Electrical Insulation, EI-12(4), 272-280. https://doi.org/10.1109/tei.1977.297979 DOI: https://doi.org/10.1109/TEI.1977.297979

Jakob, F. y Dukarm, J. J. (2015). Thermodynamic Estimation of Transformer Fault Severity. IEEE Transactions on Power Delivery, 30(4), 1941-1948. https://doi.org/10.1109/tpwrd.2015.2415767 DOI: https://doi.org/10.1109/TPWRD.2015.2415767

NMX-J-123-ANCE-2019 Aceites minerales aislantes para transformadores-Especificaciones, muestreo y métodos de prueba, declaratoria de vigencia publicada en el Diario Oficial de la Federación el 23 de enero del 2020. https://www.dof.gob.mx/nota_detalle.php?codigo=5584611&fecha=23/01/2020

NMX-J-308/1-ANCE-2004 Transformadores-guía para el manejo, almacenamiento, control y tratamiento de aceites minerales aislantes para transformadores en servicio, declaratoria de vigencia publicada en el Diario Oficial de la Federación el 13 de agosto del 2004. https://www.dof.gob.mx

Dissolved gases in mineral insulating oil samples from transformers

Published

2021-09-27

How to Cite

Gutiérrez Chávez, B. A., & Montes de Oca-Ramírez, G. (2021). Determination of faults severity in power transformers immersed in mineral insulated oil based exclusively on the DGA and by evaluating the NEI. Revista De Ciencias Tecnológicas, 4(3), 208–223. https://doi.org/10.37636/recit.v43208223

Issue

Section

Research articles

Categories