Determinación de las propiedades de higroexpansión de tableros compuestos a base de madera

Autores/as

  • Javier Ramon Sotomayor Castellanos Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58190, Morelia, Michoacán, México https://orcid.org/0000-0002-1527-8801
  • Isarael Macedo Alquicira Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58190, Morelia, Michoacán, México https://orcid.org/0000-0002-6432-6574

DOI:

https://doi.org/10.37636/recit.v7n3e348

Palabras clave:

Pinus pseudostrobus, Tableros contrachapados, Tableros enlistonados, Tableros de densidad media, Tableros de astillas orientadas

Resumen

Los tableros de madera se expanden cuando están expuestos a la humedad en condiciones de servicio. En consecuencia, su funcionamiento como material de ingeniería empobrece y ocasiona costos de reparación y/o remplazo. El objetivo de la investigación fue determinar las densidades y las higroexpansiones de tableros contrachapados, enlistonados, de densidad media y de astillas orientadas de madera. Se evaluaron los mismos parámetros en un grupo de control de madera sólida de Pinus pseudostrobus. De cada material se prepararon 35 probetas seleccionadas al azar. Se realizaron pruebas de higroscopía con un protocolo de humidificación y secado del material experimental. Las higroexpansiónes de los tableros contrachapados, enlistonados, de densidad media y de astillas orientadas son diferentes en comparación con la higroexpansión de la madera sólida de P. pseudostrobus. La madera y los tableros de madera presentan un carácter higroscópico, el cual resulta en una variación dimensional si su contenido de humedad se modifica. Las magnitudes de las higroexpansiones de los cuatro tableros estudiados son mayores a la correspondiente a la madera sólida de P. pseudostrobus.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

P. Bekhta, O. Chernetskyi, I. Kusniak, N. Bekhta, and O. Bryn, “Selected Properties of Plywood Bonded with Low-Density Polyethylene Film from Different Wood Species”, Polymers, vol. 14, p. 51, 2022. https://doi.org/10.3390/polym14010051 DOI: https://doi.org/10.3390/polym14010051

D. Kocaefe, X. Huang, and Y. Kocaefe, “Dimensional Stabilization of Wood”, Current Forestry Reports, vol. 1, pp. 151-161, 2015. https://doi.org/10.1007/s40725-015-0017-5 DOI: https://doi.org/10.1007/s40725-015-0017-5

R. Sargent, “Evaluating dimensional stability in solid wood: a review of current practice”, Journal of Wood Science, vol. 65, no. 36, pp. 1-11, 2019. https://doi.org/10.1186/s10086-019-1817-1 DOI: https://doi.org/10.1186/s10086-019-1817-1

J. R. Sotomayor Castellanos, E. Hernández Corona, M. Pérez López, and D. Soto Rangel, “Caracterización mecánica de madera reconstituida. Tableros aglomerados, contrachapados y enlistonados de madera. Higro-contracción e higro-expansión,” Investigación e Ingeniería de la Madera, vol. 8, no. 1, pp. 3-22, 2012. https://www.researchgate.net/publication/261064508_Caracterizacion_mecanica_de_madera_reconstituida_Tableros_aglomerados_contrachapados_y_enlistonados_de_madera_Higro-contraccion_e_higro-expansion_Tratamiento_higro-termico_y_pruebas_de_ultrasonido_en_

A. Patera, D. Derome, M. Griffa, and J. Carmeliet, “Hysteresis in swelling and in sorption of wood tissue”, Journal of Structural Biology, vol. 182, no. 3, pp. 226-234, 2013. https://doi.org/10.1016/j.jsb.2013.03.003 DOI: https://doi.org/10.1016/j.jsb.2013.03.003

E. T. Engelund, L. G. Thygesen, S. Svensson, and C. A. S. Hill, “A critical discussion of the physics of wood-water interactions”, Wood Science and Technology, vol. 47, no. 1, pp. 141-161, Jan. 2013. https://doi.org/10.1007/s00226-012-0514-7 DOI: https://doi.org/10.1007/s00226-012-0514-7

M. Nopens, M. Riegler, C. Hansmann, and A. Krause, “Simultaneous change of wood mass and dimension caused by moisture dynamics”, Scientific Reports, vol. 9, no. 10309, pp. 1-11, 2019. https://doi.org/10.1038/s41598-019-46381-8 DOI: https://doi.org/10.1038/s41598-019-46381-8

D. Derome, C. Zhang, M. Chen, and J. Carmeliet, “Understanding swelling of wood through multiscale modeling,” in 7th International Building Physics Conference, IBPC2018, Syracuse, 2018, pp. 355-360. https://doi.org/10.14305/ibpc.2018.be-9.06 DOI: https://doi.org/10.14305/ibpc.2018.be-9.06

R. C. Neagu, E. K. Gamstedt, and M. Lindström, “Influence of wood–fibre hygroexpansion on the dimensional instability of fibre mats and composites”, Composites Part A, Applied Science and Manufacturing, vol. 36, no. 6, pp. 772-788, 2005. https://doi.org/10.1016/j.compositesa.2004.10.023 DOI: https://doi.org/10.1016/j.compositesa.2004.10.023

T. Gereke, P. Hass, and P. Niemz, “Moisture-induced stresses and distortions in spruce crosslaminates and composite laminates”, Holzforschung, vol. 64, no. 1, pp. 127-133, 2010. https://doi.org/10.3929/ethz-b-000017324 DOI: https://doi.org/10.1515/hf.2010.003

G. C. Ajuziogu, A. N. Amujiri, E. U. Njoku, C. B. Ozokolie, and E. O. Ojua, “Determination of swelling and dimensional stability of some Nigerian timber species”, Annual Research & Review in Biology, vol. 35, no. 1, pp. 24-29, 2020. https://doi.org/10.9734/ARRB/2020/v35i130177 DOI: https://doi.org/10.9734/arrb/2020/v35i130177

M. Böhm, K. Kobetičová, J. Procházka, and R. Černý, “Moisture sorption and thickness swelling of wood-based materials intended for structural use in humid conditions and bonded with melamine resin,” en IOP Conference Series. Materials Science and Engineering, vol. 549, no. 1, pp. 1-9, 2019. https://doi.org/10.1088/1757-899X/549/1/012042 DOI: https://doi.org/10.1088/1757-899X/549/1/012042

A. Holstovs, G. Farmer, and B. Bridgens, “Sustainable Materialization of Responsive Architecture”, Sustainability, vol. 9, no. 3, pp. 435, 2017. https://doi.org/10.3390/su9030435 DOI: https://doi.org/10.3390/su9030435

D. Correa, O. D. Krieg, A. Menges, R. Reichert, and K. Rinderspacher, “Hygroskin: A Climate-Responsive Prototype Project Based on the Elastic and Hygroscopic Properties of Wood,” In ACADIA 13: Adaptive Architecture. Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture, Cambridge, pp. 33-42, 2013. https://papers.cumincad.org/data/works/att/acadia13_033.content.pdf

I. De Windt, W. Li, J. Van den Bulcke, and J. Van Acker, “Classification of uncoated plywood based on moisture dynamics”, Construction and Building Materials, vol. 158, pp. 814-822, 2018. https://doi.org/10.1016/j.conbuildmat.2017.09.194 DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.194

M. Sooru, K. Kasepuu, R. Kask, and H. Lille, “Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood”, IOP Conferences Series: Materials Science and Engineering, vol. 96, no. 012075, 2015. https://doi.org/10.1088/1757-899X/96/1/012075 DOI: https://doi.org/10.1088/1757-899X/96/1/012075

J. R. Sotomayor Castellanos, I. Macedo Alquicira, and E. Mendoza González, “Higroexpansión, higrocontracción y sus relaciones de anisotropía de ocho maderas mexicanas”, Tecnociencia Chihuahua, vol. 16, no. 1, e 869, 2022. https://doi.org/10.54167/tecnociencia.v16i1.869 DOI: https://doi.org/10.54167/tecnociencia.v16i1.869

J. R. Sotomayor Castellanos, L. E. A. Ávila Calderón, and M. Fuentes Salinas, “Características higroscópicas de las maderas Spathodea campanulata, Fraxinus americana y Albizia plurijuga impregnadas con boro”, Ciencia UNEMI, vol. 14, no. 35, pp. 10-25, 2021. https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp10-25p DOI: https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp10-25p

J. R. Sotomayor Castellanos, I. Macedo Alquicira, and E. Mendoza González, “Características higroscópicas de ocho maderas mexicanas”, Ingenierías, vol. 24, no. 91, pp. 49-63, 2021. https://doi.org/10.29105/ingenierias24.91-22 DOI: https://doi.org/10.29105/ingenierias24.91-22

A. A. Chiniforush, A. Akbarnezhad, H. Valipour, and S. Malekmohammadi, “Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study”, Construction and Building Materials, vol. 207, pp. 70-83, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.114 DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.114

S. Koman, and S. Feher, “Basic density of hardwoods depending on age and site”, Wood Research, vol. 60, no. 6, pp. 907-912, 2015. http://www.centrumdp.sk/wr/201506/07.pdf

Z. Fu, Y. Zhou, X. Gao, H. Liu, and F. Zhou, “Changes of water related properties in radiata pine wood due to heat treatment”, Construction and Building Materials, vol. 227, no. 116692, 2019. https://doi.org/10.1016/j.conbuildmat.2019.116692 DOI: https://doi.org/10.1016/j.conbuildmat.2019.116692

J. R. Sotomayor Castellanos, L. J. García Mariscal, C. E. Moya Lara, and J. B. Olguín Cerón, “Higroscopía y anisotropía de la madera de Pinus michoacana, Pinus douglasiana y Pinus pringlei. Higrocontracción, velocidad del ultrasonido y módulo de elasticidad dinámico”, Investigación e Ingeniería de la Madera, vol. 6, no. 3, pp. 3-32, 2010. https://www.researchgate.net/publication/261099839_Higroscopia_y_anisotropia_de_la_madera_de_Pinus_michoacana_Pinus_douglasiana_y_Pinus_pringlei_Higrocontraccion_velocidad_del_ultrasonido_y_modulo_de_elasticidad_dinamico

C. Lanvermann, F. K. Wittel, and P. Niemz, “Full-field moisture induced deformation in Norway spruce: intra-ring variation of transverse swelling”, European Journal of Wood and Wood Products, vol. 72, pp. 43-52, 2014. https://doi.org/10.1007/s00107-013-0746-8 DOI: https://doi.org/10.1007/s00107-013-0746-8

R. Hajihassani, B. Mohebby, S. K. Najafi, and P. Navi, “Influence of combined hygro-thermomechanical treatment on technical characteristics of poplar wood”, Maderas. Ciencia y tecnología, vol. 20, no. 1, pp. 117-128, 2018. https://doi.org/10.4067/S0718-221X2018005011001 DOI: https://doi.org/10.4067/S0718-221X2018005011001

M. R. T. Esfandiyari, M. T. Pour, H. Khademieslam, S. A. M. Shokraei, and B. Bazyar, “Investigating the Possibility of Making Lignin-glyoxal Resins as Adhesives in the Production of Plywood”, Bioresources, vol. 14, no. 3, pp. 7122-7133, 2019. https://doi.org/10.15376/biores.14.3.7122-7133 DOI: https://doi.org/10.15376/biores.14.3.7122-7133

A. Shalbafan, A. Nadali, and H. Thoemen, “A Multifunctional Mineral Binder for Plywood Production: The Effect of Manufacturing Parameters on Bonding Quality”, Materials, vol. 13, 2360, 2020. https://doi.org/10.3390/ma13102360 DOI: https://doi.org/10.3390/ma13102360

American Society for Testing and Materials, Annual Book of ASTM Standards. Section Four; Construction, Volume 04.10, Wood. West Conshohocken, ASTM, 2009. https://www.astm.org/

M. F. Galikhanov, P. A. Platonova, and A. F. Zamilova, “Influence of Polarization of Urea-Formaldehyde Glue in the Process of Manufacture of Plywood on Its Water and Moisture Absorption”, Polymer Science, Series D, vol. 11, pp. 122-126, 2018. https://doi.org/10.1134/S1995421218020065 DOI: https://doi.org/10.1134/S1995421218020065

A. Lunguleasa, N. Ayrilmis, C. Spirchez, and F. Özdemir, “Investigation of the Effects of Heat Treatment Applied to Beech Plywood”, Drvna industrija, vol. 69, no. 4, pp. 349-355, 2018. https://doi.org/10.5552/drind.2018.1768 DOI: https://doi.org/10.5552/drind.2018.1768

F. Muñoz, and R. Moya, “Effect of nanoclay-treated UF resin on the physical and mechanical properties of plywood manufactured with wood from tropical fast growth plantations”, Maderas. Ciencia y tecnología, vol. 20, no. 1, pp. 11-24, 2018. http://dx.doi.org/10.4067/S0718-221X2018005001202 DOI: https://doi.org/10.4067/S0718-221X2018005001202

A. H. S. Reis, D. W. Silva, A. P. Vilela, R. F. Mendes, and L. M. Mendes, “Physical-mechanical Properties of Plywood Produced with Acrocarpus fraxinifolius and Pinus oocarpa”, Floram, vol. 26, no. 4, e20170157, 2019. http://dx.doi.org/10.1590/2179-8087.015717 DOI: https://doi.org/10.1590/2179-8087.015717

E. S. Wibowo, M. A. R. Lubis, and B-D. Park, “Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay”, Journal of the Korean Wood Science and Technology, vol. 49, no. 5, pp. 453-46, 2021. https://doi.org/10.5658/WOOD.2021.49.5.453 DOI: https://doi.org/10.5658/WOOD.2021.49.5.453

T. Ozyhar, T. Depnering, C. Ridgway, M. Welker, J. Schoelkopf, I. Mayer, and H. Thoemen, “Utilization of inorganic mineral filler material as partial replacement for wood fiber in medium density fiberboard (MDF) and its effect on material properties”, European Journal of Wood and Wood Products, vol. 78, pp. 75-8, 2020. https://doi.org/10.1007/s00107-019-01480-1 DOI: https://doi.org/10.1007/s00107-019-01480-1

A. Gürgen, D. Ustaömer, and S. Yildiz, “Application of Artificial Neural Network to Predict the Effect of Paraffin Addition on Water Absorption and Thickness Swelling of MDF”, Drvna Industrija, vol. 70, no. 3, pp. 247-255, 2019. https://doi.org/10.5552/drvind.2019.1839 DOI: https://doi.org/10.5552/drvind.2019.1839

W. Gul, H. Alrobei, S. R. A. Shah, and A. Khan, A, “Effect of Iron Oxide Nanoparticles on the Physical Properties of Medium Density Fiberboard”, Polymers, vol. 12, no. 2911, 2020. https://doi.org/10.3390/polym12122911 DOI: https://doi.org/10.3390/polym12122911

H. Alabduljabbar, R. Alyousef, W. Gul, S. R. A. Shah, A. Khan, R. Khan, and A. Alaskar, “Effect of Alumina Nano-Particles on Physical and Mechanical Properties of Medium Density Fiberboard”, Materials, vol. 13, no. 18, p. 4207, 2020. https://doi.org/10.3390/ma13184207 DOI: https://doi.org/10.3390/ma13184207

M-K. Hong, M. A. R. Lubis, and B-D. Park, “Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard”, Journal of the Korean Wood Science and Technology, vol. 45, no. 4, pp. 444-455, 2017. https://doi.org/10.5658/WOOD.2017.45.4.444

O. Zeleniuc, A-E. Dumitrascu, and V. D. Ciobanu, “Properties Evaluation by Thickness and Type of Oriented Strand Boards Manufactured in Continuous Press Line”, BioResourses, vol. 15, no. 3, pp. 5829-5842, 2020. https://doi.org/10.15376/biores.15.1.199-210 DOI: https://doi.org/10.15376/biores.15.3.5829-5842

B. Zhuang, A. Cloutier, and A. Koubaa, “A Physical and Mechanical Properties of Oriented Strand Board Made from Eastern Canadian Softwood Species”, Forests, vol. 13, p. 523, 2022. https://doi.org/10.3390/f13040523 DOI: https://doi.org/10.3390/f13040523

Correlación de las higroexpansiones (α) de los cuatro tipos de tableros en función de sus densidades (ρCH). Los datos de pino (P. pseudostrobus) se muestran para contrastación.

Publicado

2024-07-09

Cómo citar

Sotomayor Castellanos, J. R., & Macedo Alquicira , I. (2024). Determinación de las propiedades de higroexpansión de tableros compuestos a base de madera. Revista De Ciencias Tecnológicas, 7(3), e348. https://doi.org/10.37636/recit.v7n3e348