Biomedical data transfer system with low consumption communication protocols


  • Víctor Becerra Tapia TecNM – Instituto Tecnológico Superior de Pátzcuaro, Av. Tecnológico #1, Zurumutaro, Pátzcuaro, Michoacán, México
  • Victoria Téllez Victoria TecNM – Instituto Tecnológico Superior de Pátzcuaro, Av. Tecnológico #1, Zurumutaro, Pátzcuaro, Michoacán, México
  • José Mariano Ramos Medina TecNM – Instituto Tecnológico Superior de Pátzcuaro, Av. Tecnológico #1, Zurumutaro, Pátzcuaro, Michoacán, México
  • Guillermo Rey Peñaloza Mendoza TecNM – Instituto Tecnológico Superior de Pátzcuaro, Av. Tecnológico #1, Zurumutaro, Pátzcuaro, Michoacán, México
  • Mario Salvador Castro Zenil TecNM – Instituto Tecnológico Superior de Pátzcuaro, Av. Tecnológico #1, Zurumutaro, Pátzcuaro, Michoacán, México



IoT, MQTT protocol, ESP-NOW, Raspberry Pi, Physiological constants


In the field of medical care, hospitals face numerous challenges in effectively managing biomedical data. This can lead to a decrease in the efficiency of care, as not all institutions have efficient methods for managing such data. In addition to personal data, physiological constants, such as heart rate and oxygen levels, need to be constantly monitored in order to detect any changes. However, obtaining this data from different instruments and ensuring its constant recording can be problematic. To address these challenges, a system based on the Internet of Things (IoT) has been developed. This system utilizes sensors connected to ESP32 cards, which are in constant communication, to obtain physiological constants and other relevant data. A prototype has been designed, which includes sensors placed on the wrist to measure three physiological constants. The MAX30102 pulse sensor is used to measure blood oxygenation and heart rate. This sensor can be placed on the fingers, lobe, or wrist to obtain accurate readings. Additionally, the MLX90614 sensor is used for temperature acquisition. All the data collected by these sensors is managed by an ESP32 card, which acquires the information and sends it for further use. They employ communication protocols that enable the simultaneous reading of multiple sensors for the parallel monitoring of more than one patient, a capability not addressed in current prehospital care systems. To ensure constant monitoring of physiological constants, a master-slave configuration is utilized. Each slave module collects information from individual patients and sends it to a master card. The data is encrypted during transmission. These devices can be used in various healthcare settings, including prehospital care, and can be carried by the patients themselves. The collected data is then transmitted to a central system using the MQTT protocol. A master ESP32, connected to a Raspberry Pi 4, acts as the main console, where the data is centralized. Once the data is in the MQTT broker, it can be accessed and analyzed from various devices for traceability purposes. Real-time data recording is achieved by utilizing Google services, specifically Firebase, which stores the data in a database.


Download data is not yet available.


Metrics Loading ...


B. V. N. Sousa, J. F. Teles y E. F. Oliveira. “Perfil, dificultades y particularidades en el trabajo de los profesionales de atención prehospitalaria móvil: una revisión integradora”. Revista Electrónica Enfermería Actual en Costa Rica, no. 38, pp. 17, 2020. ISSN 1409-4568. Disponible en: DOI:

J. González-Robledo, F. Martín-González, M. Moreno-García, M. Sánchez-Barba y F. Sánchez-Hernández. “Factores pronósticos relacionados con la mortalidad del paciente con trauma grave: desde la atención prehospitalaria hasta la Unidad de Cuidados Intensivos”. Medicina Intensiva, vol. 39, no 7, pp. 412-421, 2015. DOI:

H. L. Ristori. “Respuesta prehospitalaria al evento con múltiples víctimas”. Revista Médica Clínica Las Condes vol. 22, no 5, pp. 556-565, 2011. DOI:

L. M. Pinet. “Atención prehospitalaria de urgencias en el Distrito Federal: las oportunidades del sistema de salud”. Salud pública de México, vol. 47, no 1, pp. 64-71. Disponible en: DOI:

V. E. Balas, V. K. Solanki, R. Kumar and M. A. R. Ahad (ed.). “A handbook of internet of things in biomedical and cyber physical system”. Springer Nature Switzerland AG 2020. ISSN 1868-4394. DOI:

Z. U. Ahmed, M. G. Mortuza, M. J. Uddin, M. H. Kabir, M. Mahiuddin and M. J. Hoque, "Internet of Things Based Patient Health Monitoring System Using Wearable Biomedical Device," 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 2018, pp. 1-5, DOI:

E. De Giovanni et al. “Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era.” In: Aly, M.M.S., Chattopadhyay, A. (eds) Emerging Computing: From Devices to Systems. Computer Architecture and Design Methodologies. Springer, Singapore, pp. 407-433, Julio 2022. ISBN: 978-981-16-7487-7 DOI:

A. Riley and E. Nica. “Internet of Things-based Smart Healthcare Systems and Wireless Biomedical Sensing Devices in Monitoring, Detection, and Prevention of COVID-19”. American Journal of Medical Research, vol. 8, no. 2, pp. 51-64, 2021. DOI:

S. Lewis. “Wearable Internet of Things healthcare systems: smart biomedical sensors, wireless connected devices, and real-time patient monitoring”. American Journal of Medical Research, vol. 7, no 1, pp. 55-60. DOI:

A.O. Putri, M. A. Ali, M. Saad and S. S. Hidayat. “Wearable sensor and internet of things technology for better medical science: A review”. International Journal of Engineering and Technology, vol. 7, no 4, pp. 1-4, 2018. Disponible en: DOI:

C. Abreu and P. Mendes, "Wireless sensor networks for biomedical applications," 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), Braga, Portugal, 2013, pp. 1-4, DOI:

D. T. Harjono and A. S. Tamsir. “Biomedical sensor ECG, PPG, and spO2 based on Arduino Which Result from Comparison with Portable”. Technical Report, EasyChair: Manchester, UK, pp. 1-9 Julio 2020. Disponible en:

O. Gama, C. Figueiredo, P. Carvalho and P. M. Mendes, "Towards a Reconfigurable Wireless Sensor Network for Biomedical Applications," 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), Spain, 2007, pp. 490-495, DOI:

G. A. Ramos-Leyva. “Sensor MAX30102 con Arduino para la detección de la oxigenación en la sangre”. Revista Innova Ingeniería, vol. 1, no. 6, pp. 54-61. Disponible en:

M. Haghi, K. Thurow and R. Stoll. “Wearable devices in medical internet of things: scientific research and commercially available devices”. Healthcare Informatics Research, vol. 23, no. 1, pp. 4-15, Enero 2017. DOI:

A. Škraba, A. Koložvari, D. Kofjač, R. Stojanović, E. Semenkin and V. Stanovov, "Prototype of Group Heart Rate Monitoring with ESP32," 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 2019, pp. 1-4, DOI:

P. Bertoleti. Proyectos con ESP32 y LoRa. 1ra Edición. Sao Paulo Brasil: Editora Instituto NCB. 2019. Disponible en:

N. Chatterjee, S. Chakraborty, A. Decosta and A. Nath. “Real-time communication application based on android using Google firebase”. International Journal of Advance Research in Computer Science and Management Studies, vol. 6, no. 4, pp. 74-79, Abril 2018. ISSN: 2321-7782. Disponible en:

G. T. Le, N. M. Tran and T. V. Tran. “IoT system for monitoring a large-area environment sensors and control actuators using real-time firebase database”. Intelligent Human Computer Interaction. Lecture Notes in Computer Science, IHCI 2020, Daegu, South Korea, vol. 12616, pp. 3-20. Springer International Publishing. DOI:

A. Al-Kababji et al., "IoT-Based Fall and ECG Monitoring System: Wireless Communication System Based Firebase Realtime Database," 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 2019, pp. 1480-1485, DOI:

D. P. Vélez. “Diseño de un dispositivo wearable para el monitoreo de la oxigenación y ritmo cardiaco”. Memorias Del Congreso Nacional De Ingeniería Biomédica, vol. 7, no. 1, pp. 485–492. Disponible en:

G. Jin, X. Zhang, W. Fan, Y. Liu and P. He. “Design of non-contact infra-red thermometer based on the sensor of MLX90614”. The Open Automation and Control Systems Journal, vol. 7, no 1, pp. 8-20. Disponible en: DOI:

A. Sudianto, Z. Jamaludin, A. A. Abdul-Rahman, F. Muharrom and S. Novianto. “Smart temperature measurement system for milling process application based on mlx90614 infrared thermometer sensor with Arduino”. Journal of Advanced Research in Applied Mechanics, vol 72, no. 1, pp. 10-24, Agosto 2020. Disponible en: DOI:

Q. N. Alsahi and A. F. Marhoon. "Design health care system using Raspberry pi and Esp32." International Journal of Computer Applications, vol. 177, no. 36, Febrero 2020. Disponible en: DOI:

Y. C. Tsao, F. J. Cheng, Y. H. Li and L. D. Liao. “An IoT-based smart system with an MQTT broker for individual patient vital sign monitoring in potential emergency or prehospital applications”. Emergency Medicine International, vol. 2022, Article ID 7245650, 13 pages, 2022. DOI:

R. Rajeshwari, R. P. M, N. M. K and T. C, "Solitary Saline Monitoring with Alert and Control System Using IoT," 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2023, pp. 2129-2133, DOI:

A. Hafid, S. Benouar, M. Kedir-Talha, F. Abtahi, M. Attari and F. Seoane, "Full Impedance Cardiography Measurement Device Using Raspberry PI3 and System-on-Chip Biomedical Instrumentation Solutions," in IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 6, pp. 1883-1894, Nov. 2018, DOI:

K. Tejwani, J. Vadodariya and D. Panchal. “Biomedical Signal Detection using Raspberry Pi and Emotiv EPOC”. In Proceedings of the 3rd International Conference on Multidisciplinary Research & Practice (IJRSI), Ahmedabad Gujarat, India 2016, vol. 5, pp. 178-180. ISSN 2321-2705. Disponible en:

A. Zare and M. T. Iqbal, "Low-Cost ESP32, Raspberry Pi, Node-Red, and MQTT Protocol Based SCADA System," 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-5, DOI:

J. A. Cabrera-Savinovich, D. S. Pérez-Sandoval and P. Chávez-Burbano. “Diseño y Simulación de Sistema de Videovigilancia para el Monitoreo de Cultivos y Control de Acceso del Personal”. Doctoral dissertation, Escuela Superior Politécnica del Litoral, 2020. Disponible en:

F. Mahedero-Biot. “Desarrollo de una aplicación IoT para el envío de imágenes mediante el protocolo MQTT”, Doctoral dissertation, Universitat Politècnica de València, 2020. Disponible en:

J. Guasch-Llobera and M. Calleja Collado. “Monitorización de sensores con arduino utilizando el protocolo MQTT”, Bachelor's thesis, Universitat Politècnica de Catalunya, 2019. Disponible en:

J. Tardío-Rubio. “Diseño e implementación de trazabilidad y confianza de un sistema de donaciones y voluntariado con incentivos”. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Madrid, España. Disponible en:

C. M. González Mejía and L. A. Rodríguez Sarmiento. “Diseño e implementación de una red de sensores para el monitoreo de señales biomédicas utilizando requerimientos de IoT con el grupo de investigación integra”, Tesis de Licenciatura, Universidad Distrital Francisco José de Caldas, Bogotá, 2017. Disponible en:

J. A. Canaviri-Torrez y J. C. Inca Flores. “Sistema inalámbrico de adquisición de señales biomédicas y monitoreo remoto de datos prehospitalarios mediante protocolo de red TCP/IP”, Doctoral dissertation. Universidad Mayor de San Andrés, La Paz, Bolivia, 2015. Disponible en:

3D design of wireless terminal



How to Cite

Becerra Tapia, V., Téllez Victoria, V., Ramos Medina, J. M., Peñaloza Mendoza, G. R., & Castro Zenil, M. S. (2023). Biomedical data transfer system with low consumption communication protocols. REVISTA DE CIENCIAS TECNOLÓGICAS, 6(4), e284.

Most read articles by the same author(s)