Numerical study of a solar collector using water and titanium dioxide water-based nanofluid as working fluids by means of computational fluid dynamics
DOI:
https://doi.org/10.37636/recit.v6n3e260Keywords:
Solar collector, Nanofluid, Computational fluid dynamics, Entropy generationAbstract
A thermo-hydraulic performance and entropy generation comparison of an evacuated tube solar collector using water and titanium dioxide (TiO2) water-based nanofluid as working fluids is carried out by means of Computational Fluid Dynamics. It is considered a complete 3D geometry under meteorological conditions of the city of Mexicali, Mexico under an operation time of 9 hours. It was found that, throughout the operation time, the evacuated tube solar collector had a better performance in terms of outlet temperature and velocity inside the solar collector using the nanofluid than using only water as a working fluid. The phenomena of viscous effects, heat transfer, and heat loss in a global and local form are considered in the formulation of the entropy generation. The local entropy generation formulation also allows us to illustrate the exact location of the irreversibilities. It was found that, using TiO2 water-based nanofluid as a working fluid leads to a reduction of the entropy generation in all the evacuated tube solar collectors. Finally, this type of analysis by obtaining the global and local entropy generation can be helpful to improve their performance through entropy minimization.
Downloads
References
M. Rezaeian, M. Shafiey Dehaj, M. Zamani Mohiabadi, M. Salarmofrad, S. Shamsi, Experimental investigation into a parabolic solar collector with direct flow evacuated tube, Appl Therm Eng. 189 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116608. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116608
R. Wiser, D. Millstein, T. Mai, J. Macknick, A. Carpenter, S. Cohen, W. Cole, B. Frew, G. Heath, the environmental and public health benefits of achieving high penetrations of solar energy in the United States, Energy. 113 (2016) 472–486. https://doi.org/10.1016/j.energy.2016.07.068. DOI: https://doi.org/10.1016/j.energy.2016.07.068
F.R. Mazarron, C.J. Porras-Prieto, J.L. Garcia, R.M. Benavente, Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures, Energy Convers Manag. 113 (2016) 16–26. https://doi.org/10.1016/j.enconman.2016.01.046 . DOI: https://doi.org/10.1016/j.enconman.2016.01.046
M. de P.R. Teles, K.A.R. Ismail, A. Arabkoohsar, A new version of a low concentration evacuated tube solar collector: Optical and thermal investigation, Solar Energy. 180 (2019) 324–339. https://doi.org/10.1016/j.solener.2019.01.039. DOI: https://doi.org/10.1016/j.solener.2019.01.039
M. Murugan, A. Saravanan, P.V. Elumalai, P. Kumar, C. Ahamed Saleel, O.D. Samuel, M. Setiyo, C.C. Enweremadu, A. Afzal, An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers, Alexandria Engineering Journal. 61 (2022) 8123–8147. https://doi.org/10.1016/j.aej.2022.01.052. DOI: https://doi.org/10.1016/j.aej.2022.01.052
T. Güney, Solar energy, governance and CO2 emissions, Renew Energy. 184 (2022) 791–798. https://doi.org/10.1016/j.renene.2021.11.124. DOI: https://doi.org/10.1016/j.renene.2021.11.124
X. Zhang, S. You, H. Ge, Y. Gao, W. Xu, M. Wang, T. He, X. Zheng, Thermal performance of direct-flow coaxial evacuated-tube solar collectors with and without a heat shield, Energy Convers Manag. 84 (2014) 80–87. https://doi.org/10.1016/j.enconman.2014.04.014 DOI: https://doi.org/10.1016/j.enconman.2014.04.014
R. Kuang, B. Du, P.D. Lund, J. Wang, Improving performance prediction of evacuated tube solar collector through convolutional neural network method, Thermal Science and Engineering Progress. 39 (2023) 101717. https://doi.org/10.1016/j.tsep.2023.101717. DOI: https://doi.org/10.1016/j.tsep.2023.101717
S. Aggarwal, R. Kumar, D. Lee, S. Kumar, T. Singh, A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors, Heliyon. 9 (2023) e15185. https://doi.org/10.1016/j.heliyon.2023.e15185.
B.K. Naik, M. Bhowmik, P. Muthukumar, Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems, Renew Energy. 134 (2019) 1344–1361. https://doi.org/10.1016/j.renene.2018.09.066. DOI: https://doi.org/10.1016/j.renene.2018.09.066
J. Gong, Z. Jiang, X. Luo, B. Du, J. Wang, P.D. Lund, Straight-through all-glass evacuated tube solar collector for low and medium temperature applications, Solar Energy. 201 (2020) 935–943. https://doi.org/10.1016/j.solener.2020.03.069. DOI: https://doi.org/10.1016/j.solener.2020.03.069
S. Aggarwal, R. Kumar, D. Lee, S. Kumar, T. Singh, A comprehensive review of techniques for increasing the efficiency of evacuated tube solar collectors, Heliyon. 9 (2023) e15185. https://doi.org/10.1016/j.heliyon.2023.e15185. DOI: https://doi.org/10.1016/j.heliyon.2023.e15185
Y. Tong, R. Wang, S. Wang, H. Wang, L. Huang, C. Shao, X. Jin, B. Xue, Z. Zhu, Comparison and evaluation of energetic and exergetic performance of an evacuated tube solar collector using various nanofluid, Process Safety and Environmental Protection. 174 (2023) 585–594. https://doi.org/10.1016/j.psep.2023.04.025. DOI: https://doi.org/10.1016/j.psep.2023.04.025
S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the ASME International Mechanical Engineering Congress and Exposition 231. (1995) 99–105. https://www.researchgate.net/publication/236353373.
P. Martínez-Merino, P. Estellé, R. Alcántara, I. Carrillo-Berdugo, J. Navas, Thermal performance of nanofluids based on tungsten disulphide nanosheets as heat transfer fluids in parabolic trough solar collectors, Solar Energy Materials and Solar Cells. 247 (2022) 111937. https://doi.org/10.1016/j.solmat.2022.111937. DOI: https://doi.org/10.1016/j.solmat.2022.111937
H. Olfian, S.S.M. Ajarostaghi, M. Ebrahimnataj, Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids, Solar Energy. 211 (2020) 265–282. https://doi.org/10.1016/j.solener.2020.09.056. DOI: https://doi.org/10.1016/j.solener.2020.09.056
A.A. İnada, S. Arman, B. Safaei, A novel review on the efficiency of nanomaterials for solar energy storage systems, J Energy Storage. 55 (2022) 105661. https://doi.org/10.1016/j.est.2022.105661. DOI: https://doi.org/10.1016/j.est.2022.105661
A.H. Elsheikh, S.W. Sharshir, M.E. Mostafa, F.A. Essa, M.K. Ahmed Ali, Applications of nanofluids in solar energy: A review of recent advances, Renewable and Sustainable Energy Reviews. 82 (2018) 3483–3502. https://doi.org/10.1016/j.rser.2017.10.108. DOI: https://doi.org/10.1016/j.rser.2017.10.108
S. Aggarwal, R. Kumar, S. Kumar, M. Bhatnagar, P. Kumar, Computational fluid dynamics-based analysis for optimization of various thermal enhancement techniques used in evacuated tubes solar collectors: A review, Mater Today Proc. 46 (2021) 8700–8707. https://doi.org/10.1016/j.matpr.2021.04.021. DOI: https://doi.org/10.1016/j.matpr.2021.04.021
A. Sciacovelli, V. Verda, E. Sciubba, Entropy generation analysis as a design tool—A review, Renewable and Sustainable Energy Reviews. 43 (2015) 1167–1181. https://doi.org/10.1016/j.rser.2014.11.104. DOI: https://doi.org/10.1016/j.rser.2014.11.104
M.A. Sharafeldin, G. Gróf, Efficiency of evacuated tube solar collector using WO3/Water nanofluid, Renew Energy. 134 (2019) 453–460. https://doi.org/10.1016/j.renene.2018.11.010. DOI: https://doi.org/10.1016/j.renene.2018.11.010
M.A. Sharafeldin, G. Gróf, E. Abu-Nada, O. Mahian, Evacuated tube solar collector performance using copper nanofluid: Energy and environmental analysis, Appl Therm Eng. 162 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114205. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114205
S.M.S. Hosseini, M. Shafiey Dehaj, Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector, Appl Therm Eng. 182 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116086. DOI: https://doi.org/10.1016/j.applthermaleng.2020.116086
M.M. Jamil, N.A.C. Sidik, M.N.A.W.M. Yazid, Thermal Performance of Thermosyphon Evacuated Tube Solar Collector using TiO2 /Water Nanofluid, 2016.
M. Mercan, A. Yurddaş, Numerical analysis of evacuated tube solar collectors using nanofluids, Solar Energy. 191 (2019) 167–179. https://doi.org/10.1016/j.solener.2019.08.074. DOI: https://doi.org/10.1016/j.solener.2019.08.074
S. Mojtaba Tabarhoseini, M. Sheikholeslami, Modeling of evacuated tube solar collector involving longitudinal fins and nanofluids, Sustainable Energy Technologies and Assessments. 53 (2022) 102587. https://doi.org/10.1016/j.seta.2022.102587. DOI: https://doi.org/10.1016/j.seta.2022.102587
Y.Y. Gan, H.C. Ong, T.C. Ling, N.W.M. Zulkifli, C.T. Wang, Y.C. Yang, Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector, Appl Therm Eng. 145 (2018) 155–164. https://doi.org/10.1016/j.applthermaleng.2018.09.012. DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.012
S.M. Tabarhoseini, M. Sheikholeslami, Entropy generation and thermal analysis of nanofluid flow inside the evacuated tube solar collector, Sci Rep. 12 (2022). https://doi.org/10.1038/s41598-022-05263-2. DOI: https://doi.org/10.1038/s41598-022-05263-2
J.A. Alfaro-Ayala, G. Martínez-Rodríguez, M. Picón-Núñez, A.R. Uribe-Ramírez, A. Gallegos-Muñoz, Numerical study of a low temperature water-in-glass evacuated tube solar collector, Energy Convers Manag. 94 (2015) 472–481. https://doi.org/10.1016/j.enconman.2015.01.091 DOI: https://doi.org/10.1016/j.enconman.2015.01.091
J.R. Howell, R. Siegel, M.P. Mengüc, Thermal Radiation Heat Transfer, 5th. Editi, CRC Press, Boca Ratón, USA, 2012. https://doi.org/10.1017/CBO9781107415324.004. DOI: https://doi.org/10.1017/CBO9781107415324.004
A.A. Hachicha, I. Rodríguez, R. Capdevila, A. Oliva, Heat transfer analysis and numerical simulation of a parabolic trough solar collector, Appl Energy. 111 (2013) 581–592. https://doi.org/10.1016/j.apenergy.2013.04.067. DOI: https://doi.org/10.1016/j.apenergy.2013.04.067
O.A. López-Núñez, J.A. Alfaro-Ayala, J.J. Ramírez-Minguela, F. Cano-Banda, B. Ruiz-Camacho, J.M. Belman-Flores, Numerical analysis of the thermo-hydraulic performance and entropy generation rate of a water-in-glass evacuated tube solar collector using TiO2 water-based nanofluid and only water as working fluids, Renew Energy. 197 (2022) 953–965. https://doi.org/10.1016/j.renene.2022.07.156. DOI: https://doi.org/10.1016/j.renene.2022.07.156
S. Mukherjee, S. Chakrabarty, P.C. Mishra, P. Chaudhuri, Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: An experimental investigation, Chemical Engineering and Processing - Process Intensification. 150 (2020). https://doi.org/10.1016/j.cep.2020.107887. DOI: https://doi.org/10.1016/j.cep.2020.107887
A. Kamyar, R. Saidur, M. Hasanuzzaman, Application of Computational Fluid Dynamics (CFD) for nanofluids, Int J Heat Mass Transf. 55 (2012) 4104–4115. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.052. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.052
S. Koçak Soylu, Z. Yeşil Acar, M. Asiltürk, İ. Atmaca, Effects of doping on the thermophysical properties of Ag and Cu doped TiO2 nanoparticles and their nanofluids, J Mol Liq. 368 (2022) 120615. https://doi.org/10.1016/j.molliq.2022.120615. DOI: https://doi.org/10.1016/j.molliq.2022.120615
D. Groot, S. Ruurds, P. Mazur, Non-Equilibrium Thermodynamics, Dover Publications, New York, 2011.
H. Hareesh Krishnan, K.K. Ashin, A. Adhil Muhammed, B.K. Ayalur, Experimental and numerical study of wind tower integrated with solar heating unit to meet thermal comfort in buildings during cold and sunny climate conditions, Journal of Building Engineering. 68 (2023) 106048. https://doi.org/10.1016/j.jobe.2023.106048. DOI: https://doi.org/10.1016/j.jobe.2023.106048
A. Kumar, A. Maurya, Experimental analysis and CFD modeling for pyramidal solar still, Mater Today Proc. 62 (2022) 2173–2178. https://doi.org/10.1016/j.matpr.2022.03.360. DOI: https://doi.org/10.1016/j.matpr.2022.03.360
J.A. Alfaro-Ayala, O.A. López-Núñez, F.I. Gómez-Castro, J.J. Ramírez-Minguela, A.R. Uribe-Ramírez, J.M. Belman-Flores, S. Cano-Andrade, Optimization of a solar collector with evacuated tubes using the simulated annealing and computational fluid dynamics, Energy Convers Manag. 166 (2018) 343–355. https://doi.org/10.1016/j.enconman.2018.04.039 DOI: https://doi.org/10.1016/j.enconman.2018.04.039
O.A. López-Núñez, J. Arturo Alfaro-Ayala, J.J. Ramírez-Minguela, J. Nicolás Flores-Balderas, J.M. Belman-Flores, Solar Radiation Model Applied to a Low Temperature Evacuated Tubes Solar Collector, J Sol Energy Eng. 141 (2018) 031003. https://doi.org/10.1115/1.4041402 DOI: https://doi.org/10.1115/1.4041402
Published
How to Cite
License
Copyright (c) 2023 Oscar Alejandro López Núñez, Fernando Lara Chávez, Arilí Cardenas-Robles, Álvaro Gónzalez Ángeles
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors who publish in this journal accept the following conditions:
The authors retain the copyright and assign to the journal the right of the first publication, with the work registered with the Creative Commons Attribution license 4.0, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this magazine.
Authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as they clearly indicate that the work it was first published in this magazine.
Authors are allowed and encouraged to share their work online (for example: in institutional repositories or personal web pages) before and during the manuscript submission process, as it can lead to productive exchanges, greater and more quick citation of published work (see The Effect of Open Access).