Generative design applied to the design of an automobile brake pedal

Authors

  • Christian Enrique Nava Alcantar Tecnológico Nacional de México / ITS Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México https://orcid.org/0009-0004-9892-4785
  • Luis Armando Puente Gallardo Tecnológico Nacional de México / ITS Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México https://orcid.org/0009-0001-6054-4005
  • Marco Antonio Martinez Bocanegra Tecnológico Nacional de México / ITS Sur de Guanajuato, Educación Superior 2000, Benito Juárez, 38980 Uriangato, Guanajuato, México https://orcid.org/0000-0002-4655-9809
  • Mariano Braulio Sánchez Tecnológico Nacional de México / ITS Sur de Guanajuato https://orcid.org/0000-0001-9965-6103

DOI:

https://doi.org/10.37636/recit.v6n4e299

Keywords:

Generative design, Additive manufacturing, Finite element method, Structural Optimization, Brake pedal

Abstract

The present work proposes the use of generative design for the modeling of an automobile brake pedal, generating a functional, safe and light design proposal; reducing as much as possible the amount of material, but keeping a good mechanical resistance. For this research, use was made of the generative design module of the Autodesk Fusion 360® CAD software. This software employs a series of algorithms and the parameters defined by the user, and based on this, generate a series of pedal design proposals. As a result of the research, two brake pedal proposals were obtained. The finite element analysis (FEM) showed mechanical stresses up to 86.07 % below the ultimate stress of the manufacturing material (aluminum 6061-T4). Additionally, safety factor of up to 4.8 and a reduction in pedal mass of up to 16.67% were obtained. The results showed that generative design is a good tool to explore new ideas and concepts that promote innovation in automotive design, achieving functional, resistant and low material consumption designs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S. Junk y N. Rothe, "Lightweight design of automotive components using generative design with fiber-reinforced additive manufacturing", Procedia CIRP, vol. 109, pp. 119–124, 2022. Accedido el 14 de junio de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.procir.2022.05.224 DOI: https://doi.org/10.1016/j.procir.2022.05.224

S. Rosenthal, F. Maaß, M. Kamaliev, M. Hahn, S. Gies y A. E. Tekkaya, "Lightweight in automotive components by forming technology", Automot. Innov., vol. 3, n.º 3, p. 195–209, julio de 2020. Accedido el 4 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.1007/s42154-020-00103-3 DOI: https://doi.org/10.1007/s42154-020-00103-3

"Effect of 3d printing direction on manufacturing costs of automotive parts", Int. J. Traffic Transport Eng., vol. 11, n. º 1, marzo de 2021. Accedido el 1 de julio de 2023. [En línea]. Disponible: https://doi.org/10.7708/ijtte.2021.11(1).05 DOI: https://doi.org/10.7708/ijtte.2021.11(1).05

Stavropoulos, P., Bikas, H., Souflas, T., Tzimanis, K., Papaioannou, C., & Porevopoulos, N. (2023). Additive manufacturing in the automotive industry. En 3D printing (pp. 453–470). CRC Press. https://doi.org/10.1201/9781003296676-29 DOI: https://doi.org/10.1201/9781003296676-29

Schönemann, M., Schmidt, C., Herrmann, C., & Thiede, S. (2016). Multi-level modeling and simulation of manufacturing systems for lightweight automotive components. Procedia CIRP, 41, 1049–1054. https://doi.org/10.1016/j.procir.2015.12.063 DOI: https://doi.org/10.1016/j.procir.2015.12.063

A. Graciano y G. Prado, "Considerations on parametric design and generative design", Link Symp. Abstr. 2020, p. 46–47, diciembre de 2020. Accedido el 4 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.24135/linksymposium.vi.25 DOI: https://doi.org/10.24135/linksymposium.vi.25

J. Zhu, H. Zhou, C. Wang, L. Zhou, S. Yuan y W. Zhang, "A review of topology optimization for additive manufacturing: Status and challenges", Chin. J. Aeronaut., vol. 34, n. º 1, pp. 91–110, enero de 2021. Accedido el 14 de junio de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.cja.2020.09.020 DOI: https://doi.org/10.1016/j.cja.2020.09.020

A. Nordin, "Challenges in the industrial implementation of generative design systems: An exploratory study", Artif. Intell. Eng. Design, Anal. Manuf., vol. 32, n.º 1, pp. 16–31, enero de 2017. Accedido el 17 de junio de 2023. [En línea]. Disponible: https://doi.org/10.1017/s0890060416000536 DOI: https://doi.org/10.1017/S0890060416000536

G. Díaz, R. F. Herrera, F. C. Muñoz-La Rivera y E. Atencio, "Applications of generative design in structural engineering", Revista ingeniería de construcción, vol. 36, n.º 1, pp. 29–47, abril de 2021. Accedido el 14 de junio de 2023. [En línea]. Disponible: https://doi.org/10.4067/s0718-50732021000100029 DOI: https://doi.org/10.4067/S0718-50732021000100029

J. Wu, X. Qian y M. Y. Wang, “Advances in generative design”, Computer-Aided Des., vol. 116, p. 102733, noviembre de 2019. Accedido el 21 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.cad.2019.102733 DOI: https://doi.org/10.1016/j.cad.2019.102733

S. Junk and L. Burkart, “Comparison of CAD systems for generative design for use with additive manufacturing,” Procedia CIRP, vol. 100, pp. 577–582, 2021, 31st CIRP Design Conference 2021 (CIRP Design 2021), issn: 2212-8271. https://doi:10.1016/j.procir.2021.05.126. DOI: https://doi.org/10.1016/j.procir.2021.05.126

S. Khan y M. J. Awan, “A generative design technique for exploring shape variations”, Adv. Eng. Inform., vol. 38, pp. 712–724, octubre de 2018. Accedido el 27 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.aei.2018.10.005 DOI: https://doi.org/10.1016/j.aei.2018.10.005

M. Leary, “Generative design”, en Design for Additive Manufacturing. Elsevier, 2020, pp. 203–222. Accedido el 27 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.1016/b978-0-12-816721-2.00007-5 DOI: https://doi.org/10.1016/B978-0-12-816721-2.00007-5

A. E. Eiben y J. Smith, "From evolutionary computation to the evolution of things", Nature, vol. 521, n. º 7553, pp. 476–482, mayo de 2015. Accedido el 16 de junio de 2023. [En línea]. Disponible: https://doi.org/10.1038/nature14544 DOI: https://doi.org/10.1038/nature14544

J. Sokolowski, J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Berlin: Springer-Verlag, 1992. Accedido el 16 de junio de 2023. [En línea]. Disponible: https://link.springer.com/book/10.1007/978-3-642-58106-9

Z. Wang, Z. Cao, F. Fan y Y. Sun, "Shape optimization of free-form grid structures based on the sensitivity hybrid multi-objective evolutionary algorithm", J. Building Eng., vol. 44, pp. 102538, diciembre de 2021. Accedido el 12 de julio de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.jobe.2021.102538 DOI: https://doi.org/10.1016/j.jobe.2021.102538

Bendsoe, M. P., & Sigmund, O. (2004). Topology optimization (2a ed.). Springer. Accedido el 16 de junio de 2023. [En línea]. Disponible: https://link.springer.com/book/10.1007/978-3-662-05086-6

J. Alcaide-Marzal, J. A. Diego-Mas y G. Acosta-Zazueta, "A 3D shape generative method for aesthetic product design", Des. Stud., vol. 66, pp. 144–176, enero de 2020. Accedido el 16 de junio de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.destud.2019.11.003 DOI: https://doi.org/10.1016/j.destud.2019.11.003

D. M. Baskin, "The automotive body lightweight design philosophy", en Lightweight Composite Structures in Transport. Elsevier, 2016, p. 75–90. Accedido el 4 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.1016/b978-1-78242-325-6.00004-9 DOI: https://doi.org/10.1016/B978-1-78242-325-6.00004-9

Zelinski, P. Generative design to bring weight and cost savings for micromobility FUV, Additive Manufacturing, junio 2020. Accedido el 01 de julio de 2023. [En línea]. Disponible: https://www.additivemanufacturing.media/articles/generative-design-to-bring-weight-and-cost-savings-for-micromobility-fuv

"Generative design electric bus". Autodesk | 3D Design, Engineering & Construction Software. Accedido el 01 de julio de 2023. [En línea]. Disponible: https://www.autodesk.com/campaigns/generative-design/bus

J. Kulangara, C. S. P. Rao y J. Cherian, "Topology optimization of lattice structure on a brake pedal", Mater. Today: Proc., junio de 2021. Accedido el 4 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.1016/j.matpr.2021.06.059 DOI: https://doi.org/10.1016/j.matpr.2021.06.059

L. Lira. "Topology optimized brake pedal - generative design Autodesk fusion 360". Autodesk Community Gallery, abril de 2021. Accedido el 4 de agosto de 2023. [En línea] Disponible: https://www.autodesk.com/community/gallery/project/159177/topology-optimized-brake-pedal---generative-design-autodesk-fusion-360

J. M. Benyus, Biomimicry: Innovation Inspired by Nature. Harper Perennial, 2002. Accedido el 4 de agosto de 2023. [En línea] Disponible: https://biomimicry.org/chapterone/

Biomimetic Technologies. Elsevier, 2015. Accedido el 9 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.1016/c2014-0-03749-5 DOI: https://doi.org/10.1016/C2014-0-03749-5

Y. Q. Zheng, H. Y. Xu y B. Li, "Vehicle brake-pedal arm strength analysis and optimization based on ABAQUS", Adv. Mater. Res., vol. 549, pp. 875–878, julio de 2012. Accedido el 16 de junio de 2023. [En línea]. Disponible: https://doi.org/10.4028/www.scientific.net/amr.549.875 DOI: https://doi.org/10.4028/www.scientific.net/AMR.549.875

G. Ganesh, P. Unmesh y S. S. Kadam, "Design and analysis of commercial automotive vehicle brake pedal ", Appl. Mechanics Mater., vol. 813-814, p. 964–971, noviembre de 2015. Accedido el 4 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.4028/www.scientific.net/amm.813-814.964 DOI: https://doi.org/10.4028/www.scientific.net/AMM.813-814.964

R. Limpert, Brake Design and Safety, 2da ed. Warrendale, Penn: SAE International, 2011. Accedido el 5 de septiembre de 2023. [En línea]. Disponible: https://ia803101.us.archive.org/33/items/BrakeDesignAndSafetyRudolfLimpert2ed/Brake%20Design%20and%20Safety%20-%20Rudolf%20Limpert%20-%202ed.pdf

F. Buonamici, M. Carfagni, R. Furferi, Y. Volpe y L. Governi, “Generative design: An explorative study”, Computer-Aided Des. Appl., vol. 18, n.º 1, pp. 144–155, mayo de 2020. Accedido el 22 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.14733/cadaps.2021.144-155 DOI: https://doi.org/10.14733/cadaps.2021.144-155

B. E. Paton y O. K. Antonov, "Handbook: Aluminum alloys", Metal Sci. Heat Treatment, vol. 16, n. º 8, p. 722–723, agosto de 1974. Accedido el 20 de julio de 2023. [En línea]. Disponible: https://doi.org/10.1007/bf00658450 DOI: https://doi.org/10.1007/BF00658450

Kharde, A., Khande, R., Khedekar, S., Manchekar, J., & Anavkar, J. S. (2021). Design and mass optimization of brake pedal using topology optimization technique. International Research Journal of Engineering and Technology (IRJET), 08, Artículo 2395-0056. https://www.irjet.net/archives/V8/i5/IRJET-V8I5103.pdf

L. Barbieri y M. Muzzupappa, "Performance-driven engineering design approaches based on generative design and topology optimization tools: A comparative study", Appl. Sci., vol. 12, n. º 4, pp. 2106, febrero de 2022. Accedido el 4 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.3390/app12042106 DOI: https://doi.org/10.3390/app12042106

M. Sargini, S. Masood, S. Palanisamy, E. Jayamani y A. Kapoor, “Finite element analysis of automotive arm brake pedal for rapid manufacturing”, IOP Conf. Series: Mater. Sci. Eng., vol. 715, p. 012020, enero de 2020. Accedido el 21 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.1088/1757-899x/715/1/012020 DOI: https://doi.org/10.1088/1757-899X/715/1/012020

E. N. Armendáriz-Mireles, F. D. Raudi-Butrón, M. A. Olvera-Carreño y E. Rocha-Rangel, “Design of bio-inspired irregular porous structure applied to intelligent mobility products”, Nexo Rev. Cient., vol. 36, n.º 02, pp. 110–121, marzo de 2023. Accedido el 22 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.5377/nexo.v36i02.16018 DOI: https://doi.org/10.5377/nexo.v36i02.16018

A. J. Macdonald, “The archetypes of the structural form”, en Structure and Architecture. Third edition. | New York: Routledge, 2018.: Routledge, 2018, pp. 61–77. Accedido el 27 de octubre de 2023. [En línea]. Disponible: https://doi.org/10.4324/9781315210513-5 DOI: https://doi.org/10.4324/9781315210513-5

Solution model designed by the additive manufacturing method (model B).

Published

2023-11-19

How to Cite

Nava Alcantar, C. E., Puente Gallardo, L. A., Martinez Bocanegra, M. A., & Braulio Sánchez , M. (2023). Generative design applied to the design of an automobile brake pedal. REVISTA DE CIENCIAS TECNOLÓGICAS (RECIT), 6(4), e299. https://doi.org/10.37636/recit.v6n4e299