Waveguide design as biosensors

Authors

  • Norma Alicia Barboza-Tello Faculty of Engineering Sciences and Technology, Valle de las Palmas Unit, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0002-1009-3672
  • Luis Antonio Ríos-Osuna Department of Optics, Ensenada Center for Scientific Research and Higher Education, Ensenada, Baja California, Mexico. https://orcid.org/0000-0001-6495-5031
  • Paúl Medina-Castro Faculty of Engineering Sciences and Technology, Valle de las Palmas Unit, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0003-3306-1494
  • Allen Alexander Castillo-Barrón Faculty of Engineering Sciences and Technology, Valle de las Palmas Unit, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0001-8023-2642
  • Irma Uriarte-Ramírez Faculty of Engineering Sciences and Technology, Valle de las Palmas Unit, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0002-9442-8731
  • Daniela Martínez-Plata Faculty of Engineering Sciences and Technology, Valle de las Palmas Unit, Autonomous University of Baja California, Tijuana, Baja California, Mexico. https://orcid.org/0000-0003-2814-2820
  • Miguel Alejandro Díaz-Hernández Faculty of Engineering Sciences and Technology, Valle de las Palmas Unit, Autonomous University of Baja California, Tijuana, Baja California, Mexico.

DOI:

https://doi.org/10.37636/recit.v313543

Keywords:

Waveguides, Biosensors, Silicon nitride, Metric.

Abstract

Currently there are numerous advances in the medical area that lead to more accurate diagnoses. However, there is an opportunity issue in terms of timely and non-invasive diagnosis. Detecting and characterizing small particles such as viruses in the air or bacteria in food is very useful, and it has been reported that among the existing diagnostic and analysis techniques for biological samples, those based on waveguide biosensor have significant advantages, such as higher resolution and real-time detecting. The physical and geometric characteristics of the waveguide will determine its usefulness in each application. This paper presents the methodology for modeling waveguides using the free software called Metric; Silicon nitride (Si3N4) waveguides were modeled to study their potential as biosensors.

Downloads

Download data is not yet available.

References

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm & F.F. Bier, "Integrated planar optical waveguide interferometer biosensors: A comparative review". Biosensors and Bioelectronics, vol. 58, pp. 287-307, 2014. https://doi.org/10.1016/j.bios.2014.02.049. DOI: https://doi.org/10.1016/j.bios.2014.02.049

J.P. Chambers, B.P. Arunalandam, L.L. Matta, A. Weis, & J.J. Valdes, "Biosensor recognition elements". Curr Issues Mol Biol., vol. 10, pp. 1-12, 2008. https://tel.archives-ouvertes.fr/tel-01362941v1/html_references.

K. Okubo, K. Uchimayamada, K. Asakawa, & H. Suzuki, "Silicon nitride directional coupler interferometer for surface sensing", Opt. Engineering, vol. 66, No. 1, pp. 017101-1-017101-7, 2017. https://doi.org/10.1117/1.OE.56.1.017101. DOI: https://doi.org/10.1117/1.OE.56.1.017101

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, & I. Molina. Fernández, "Subwalength structures for silicon photonics biosensing", Opt. & Laser Tech., vol. 109, pp. 437-448, 2019. https://doi.org/10.1016/j.optlastec.2018.07.071. DOI: https://doi.org/10.1016/j.optlastec.2018.07.071

B.E.A. Saleh, & M.C. Teich, "Fundamentals of photonics", 3th Edition, New York: John Wiley & Sons, 2001. https://doi.org/10.1002/0471213748. DOI: https://doi.org/10.1002/0471213748

M. Pu, N. Yao, Ch. Hu, and Z. Zhao "Directional coupler and nonlinear Mach-Zehnder interferometer metal-insulator-metal plasmonic waveguide" Opt. Express, vol. 18, no. 20, pp. 21030-21037, 2010. https://doi.org/10.1364/OE.18.021030. DOI: https://doi.org/10.1364/OE.18.021030

C. Chen, P. Berini, D. Feng, S. Tanev & P. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media", Opt. Express, vol. 7, pp. 260-272, 2000. https://doi.org/10.1364/OE.7.000260. DOI: https://doi.org/10.1364/OE.7.000260

X. Guan, H. Wu, Y. Shi, L. Wosinsky & D. Dai, "Ultracompact and broadband polarization beam splitter utilizing the evanscent coupling between a hybrid plasmonic waveguide and a silicon nanowire", Opt. Letters, vol. 38, no. 16, pp. 3005-3008, 2013. https://doi.org/10.1364/OL.38.003005. DOI: https://doi.org/10.1364/OL.38.003005

T. Murphy, (2011). Mathworks (version 1.2.0.0). Disponible en: https://www.mathworks.com/matlabcentral/fileexchange/12734-waveguide-mode-solver.

Lumerical (2019), Disponible en: https://www.lumerical.com/

Metric, Mode expansion tools for 2D rectangular integrated optical circuits, (2019). Disponible en: https://metric.computational-photonics.eu/

M. Hammer, M. Lohmeyer, R. Stoffer, O.V. Ivanova (2019), Ejemplos de Metric, Disponible en: https://metric.computational-photonics.eu/examples.html

Coupled mode theory, a beam propagating through one guide can be fully transferred to a second guide, if it is positioned close enough to the first guide.

Published

2020-01-01

How to Cite

Barboza-Tello, N. A., Ríos-Osuna, L. A., Medina-Castro, P., Castillo-Barrón, A. A., Uriarte-Ramírez, I., Martínez-Plata, D., & Díaz-Hernández, M. A. (2020). Waveguide design as biosensors. Revista De Ciencias Tecnológicas, 3(1), 35–43. https://doi.org/10.37636/recit.v313543

Issue

Section

Research articles

Categories