Generación electroquímica de hidrógeno utilizando agua industrial amoniacal y electrodos de grafito reciclado

Autores/as

  • Damaris Margarita Puente Siller Altos Hornos de México S. A. B. de C. V., Campos Elíseos 29, 7o. Piso Col. Rincón del Bosque C.P. 11580 Miguel Hidalgo México, Ciudad de México, México. https://orcid.org/0000-0001-5131-5190
  • José Manuel González de la Cruz Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N, República Oriente, 25280 Saltillo, Coahuila, México. https://orcid.org/0000-0003-3805-8964
  • Ivan Omar Acuña Gutierrez Altos Hornos de México S. A. B. de C. V., Campos Elíseos 29, 7o. Piso Col. Rincón del Bosque C.P. 11580 Miguel Hidalgo México, Ciudad de México, México. https://orcid.org/0000-0001-5992-9840
  • José de Jesús Vega Valdés Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N, República Oriente, 25280 Saltillo, Coahuila, México. https://orcid.org/0009-0008-2920-7511
  • Juan Antonio López Corpus Altos Hornos de México S. A. B. de C. V., Campos Elíseos 29, 7o. Piso Col. Rincón del Bosque C.P. 11580 Miguel Hidalgo México, Ciudad de México, México.
  • Alberto Perea Garduño Altos Hornos de México S. A. B. de C. V., Campos Elíseos 29, 7o. Piso Col. Rincón del Bosque C.P. 11580 Miguel Hidalgo México, Ciudad de México, México.

DOI:

https://doi.org/10.37636/recit.v7n4e304

Palabras clave:

Electrólisis, Hidrógeno, Soluciones de amoniaco

Resumen

La búsqueda de combustibles que no emitan gases de efecto invernadero, hace que el uso de hidrógeno en la industria siderúrgica sea cada vez más necesario, por lo que, esta investigación representa un compromiso ecológico, donde, tanto investigadores como la empresa buscan la generación de hidrógeno para su utilización en el proceso productivo del acero. Para su desarrollo, se utilizó una celda de acrílico, solución amoniacal y una fuente de poder. El proceso experimental consta de tres partes, primero, la evaluación de la generación de hidrógeno variando el potencial aplicado y el tiempo de electrólisis; segundo, la sustitución del agua amoniacal por una solución de amoniaco sintética, a fin de explicar el comportamiento del sistema y minimizar el efecto de los componentes de la solución ajenos al amoniaco; y tercero, el cambio de los electrodos de grafito por electrodos de acero, con el objetivo de evaluar su efecto en el proceso electrolítico. La cuantificación del hidrógeno fue de manera indirecta, utilizando un tubo de Venturi mediante el cual, se succionaron y depositaron los gases generados y en una solución de sulfato cúprico (generando precipitados) para determinar estequiométricamente la masa de hidrógeno producida. Los resultados de la evaluación del tiempo, densidad de corriente y concentración de las soluciones, definieron un tiempo experimental de 30 minutos, una densidad de corriente de 100 A/m2 y que la concentración inicial de amoniaco en las soluciones, puede influir en los resultados obtenidos, los mejores resultados corresponden a la generación de 1.130 g H2 en una solución con 2.6 g/l NH3. En conclusión, fue posible determinar las mejores condiciones de procesamiento; que la concentración inicial de amoniaco tiene un efecto en la generación electroquímica de hidrógeno; que en todas las soluciones se tuvo una disminución en la concentración inicial de amoniaco y que mediante la determinación indirecta del hidrógeno fue posible desarrollar los cálculos de masa generada del gas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Manuel González de la Cruz, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N, República Oriente, 25280 Saltillo, Coahuila, México.

Profesor Investigador 

Facultad de Metalurgia

Ivan Omar Acuña Gutierrez, Altos Hornos de México S. A. B. de C. V., Campos Elíseos 29, 7o. Piso Col. Rincón del Bosque C.P. 11580 Miguel Hidalgo México, Ciudad de México, México.

Investigador - Especialista, Investigación y Desarrollo

José de Jesús Vega Valdés, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N, República Oriente, 25280 Saltillo, Coahuila, México.

Estudiante

Juan Antonio López Corpus, Altos Hornos de México S. A. B. de C. V., Campos Elíseos 29, 7o. Piso Col. Rincón del Bosque C.P. 11580 Miguel Hidalgo México, Ciudad de México, México.

Gerente - Investigación y Desarrollo

Citas

P. Asensio. 2007. “Hidrógeno y pila de combustible” Energías renovables, pp. 1-20. Available: https://www.fenercom.com/wp-content/uploads/2007/08/Cuadernos-energias-renovables-para-todos-hidrogeno-y-pila-de-combustible-fenercom.pdf [Nov. 28, 2024].

M. Aziz, A. T. Wijayanta and A.B.D. Nadiyanto. 2020. “Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization” Energies, 13(12), pp. 3062. DOI: https://doi.org/10.3390/en13123062 DOI: https://doi.org/10.3390/en13123062

S. Ghavam, M. Vahdati, I.A. Grant Wilson and Peter Styring. 2021. “Sustainable Ammonia Production Processes” Frontiers in Energy Research, vol. 9, pp. 1-19. DOI: 10.3389/fenrg.2021.580808 DOI: https://doi.org/10.3389/fenrg.2021.580808

. P. Babar and G.G. Botte. 2024. “Recent Advances in Ammonia Electrolysis for Sustainable Hydrogen Generation” ACS Sustainable Chemistry & Engineering, vol. 12, pp. 13030-13047. DOI: https://doi.org/10.1021/acssuschemeng.4c02093 DOI: https://doi.org/10.1021/acssuschemeng.4c02093

Z. Dülger and K. R. Özcelik. 2000. “Fuel economy improvement by on board electrolytic hydrogen production”, Int. J. Hydrog. Energy, vol. 25, pp. 895-897, Available: http://hpowertech.com/wp-content/uploads/2015/06/fuel-economy-improvement-with-hydrogen-production.pdf [Nov. 28, 2024]. DOI: https://doi.org/10.1016/S0360-3199(99)00108-1

B. Wang, T. Li, F. Gong, M. H Dzarfan Othman, and R. Xiao. 2022. “Ammonia as a Green energy carrier: Electrochemical synthesis and direct ammonia fuel cell – a comprehensive review”, Fuel Process. Technol., vol. 235, pp. 107380. DOI: https://doi.org/10.1016/j.fuproc.2022.107380 DOI: https://doi.org/10.1016/j.fuproc.2022.107380

C. T. Chong, Y. V. Fan, C. T. Lee and J. J. Klemes. 2022. “Post COVID-19 ENERGY sustainability and carbon emissions neutrality” Energy, vol 241, pp. 122801. DOI: https://doi.org/10.1016/j.energy.2021.122801 DOI: https://doi.org/10.1016/j.energy.2021.122801

C.Boongaling Agaton, K. I. Taloaig Batac and E. Medrano Reyes Jr. 2022. “Prospects and challenges for Green hydrogen production and utilization in the Philippines”. Int. J. Hydrog, 47(41) pp. 17859-17870. DOI: https://doi.org/10.1016/j.ijhydene.2022.04.101 DOI: https://doi.org/10.1016/j.ijhydene.2022.04.101

U. Y. Qazi. 2022. “Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities”, Energies, 15(13), pp. 4741. DOI: https://doi.org/10.3390/en15134741 DOI: https://doi.org/10.3390/en15134741

M. D. Scovell, 2022. “Explaining hydrogen energy technology acceptance: A critical review”, Int. J. Hydrog, 47(19), pp. 10441-10459. DOI: https://doi.org/10.1016/j.ijhydene.2022.01.099 DOI: https://doi.org/10.1016/j.ijhydene.2022.01.099

K. Y. Barrientos Castillo and S. J. Bernabé Meza “Producción de hidrógeno por electrólisis alcalina utilizando electrocatalizadores de aleaciones ternarias” Professional Thesis, Facultad de Ingeniería Química, Universidad Nacional del Centro de Perú, Huncayo, Perú. 2013. Available: https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/3707/Barrientos%20Castillos-Bernabe%20Meza.pdf?sequence=1&isAllowed=y [Nov. 28, 2024].

N. M. Adli, H. Zhang, S. Mukherjee and G. Wu. 2018. “Review – Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells”, J. Electrochem. Soc., 165(15), pp. J3130 – J3147. DOI: 10.1149/2.0191815jes DOI: https://doi.org/10.1149/2.0191815jes

H, O’ and M. Bockris. 2013. “The hydrogen economy: Its history”, Int. J. Hydrog, vol. 38, pp. 2579-2588. DOI: http://dx.doi.org/10.1016/j.ijhydene.2012.12.026 DOI: https://doi.org/10.1016/j.ijhydene.2012.12.026

M. Ball and M. Weeda. 2015. “The hydrogen economy – Vision or reality?”, Int. J. Hydrog., vol. 40, pp. 7903-7919. DOI: http://dx.doi.org/10.1016/j.ijhydene.2015.04.032 DOI: https://doi.org/10.1016/j.ijhydene.2015.04.032

S. Sun, Q. Jiang, D. Zhao, T. Cao, H. Sha, C. Zhang, H. Song and Z. Da. 2022. “Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production”, Renew. Sustain. Energy Rev., vol, 169, pp. 112918. DOI: https://doi.org/10.1016/j.rser.2022.112918 DOI: https://doi.org/10.1016/j.rser.2022.112918

L. A. Hassan, H. S. Ramadan, M. A. Saleh and D. Hissel. 2021. “Hydrogen storage technologies for stationary and movible applications: Review, analysis and perspectives”, Renew. Sustain. Energy Rev., vol. 149, pp. 111311. DOI: https://doi.org/10.1016/j.rser.2021.111311 DOI: https://doi.org/10.1016/j.rser.2021.111311

E. C. Oknokwo, M. Al-Breiki, Y. Bicer, T. Al-Ansari. 2021. “Sustainable hydrogen roadmap: A holistic review and decision-making methodology for production, utilization and exportation using Qatar as a case study” Int. J. Hydrog, 46(72), pp. 35525-35549. DOI: https://doi.org/10.1016/j.ijhydene.2021.08.111 DOI: https://doi.org/10.1016/j.ijhydene.2021.08.111

F. Du, W. Sun, H. Luo, and C. M. Li. 2022. “Recent progress in electrochemical synthesis of carbon-free hydrogen carrier ammonia and ammonia fuel cells: A review” Materials Reports: Energy, 2(4), pp. 100163. DOI: https://10.1016/j.matre.2022.100163 DOI: https://doi.org/10.1016/j.matre.2022.100163

D. Andriani and Y. Bicer. 2023. “A Review of Hydrogen Production from Onboard Ammonia Decomposition: Maritime Applications of Concentrated Solar Energy and Boil-Off Gas Recovery” Fuel, vol. 352, pp. 128900. DOI: https://doi.org/10.1016/j.fuel.2023.128900 DOI: https://doi.org/10.1016/j.fuel.2023.128900

D.K. Lim, A. B. Plymill, H. Paik, X. Qian, S. Zecevic, C. R. I. Chisholm and S. M. Haile. 2020. “Solid Acid Electrochemical Cell for the Production Hydrogen from Ammonia”, Joule, 4(11), pp. 2338-2347. DOI: https://doi.org/10.1016/j.joule. 2020.10.006 DOI: https://doi.org/10.1016/j.joule.2020.10.006

P. Modisha and D. Bessarabov. 2016. “Electrocatalytic Process for Ammonia Electrolysis: A Remediation Technique with Hydrogen Co-Generation”, Int. J. Electrochem. Sci., vol. 11, pp. 6627-6635. DOI:10.20964/2016.08.54 DOI: https://doi.org/10.20964/2016.08.54

P. Peng, J. Su and H. Breunig. 2023. “Benchmarking plasma and electrolysis decomposition technologies for ammonia to power generation”, Energ. Convers. Manage., vol. 288, pp. 117166. DOI: https://doi.or/10.16/j.enconman.2023.117166 DOI: https://doi.org/10.1016/j.enconman.2023.117166

H. Maleki and V. Bertola. 2022. “Co-Ce-Al-O mesoporous catalysts for hydrogen generation via ammonia decomposition” Int. J. Hydrog. DOI: https://doi.org/10.1016/j.ijhydene.2022.06.021 DOI: https://doi.org/10.1016/j.ijhydene.2022.06.021

V. A. Borisov, K. N. Iost, V. L. Temerev, M. M. Simunin, N.N.Leont’eva, Y. L. Mikhlin, M. N. Volochaev and D. A. Shlyapin. 2022. “Ammonia decomposition Ru catalysts supperted on alumina nanofibers for hydrogen generation” Mater. Lett., vol. 306, pp. 130842. DOI: https://doi.org/10.1016/j.matlet.2021.130842 DOI: https://doi.org/10.1016/j.matlet.2021.130842

C. Huang, Y. Yu, X. Tang, Z. Liu, J. Zhang, C. Ye, Y. Ye and R. Zhang. 2020. “Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: Influence of support morphologies”, Appl. Surf. Sci., vol 532, pp. 147335. DOI: https://doi.org/10.1016/j.apsusc.2020.147335 DOI: https://doi.org/10.1016/j.apsusc.2020.147335

S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. Van der Gryp and D. G. Bessarabov. 2013. “Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review”, Int. J. Hydrog, vol. 38, pp. 14968-14991 DOI: http://dx.doi.org/10.1016/j.ijhydene.2013.09.067 DOI: https://doi.org/10.1016/j.ijhydene.2013.09.067

J. Liu, B. Chen, Y. Kou, Z. Liu, X. Chen, Y. Li, Y. Deng, X. Han, W. Hu and C. Zhong. 2016. “Pt-decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation”, J. Mater. Chem. A., vol. 4, no. 28, pp. 11060-11068. DOI:10.1039/C6TA02284G DOI: https://doi.org/10.1039/C6TA02284G

H. Zhang, Y. Wang, Z. Wu and D. Y. C. Leung. 2017. “An ammonia electrolytic cell with NiCu/C as anode catalyst for hydrogen production”, Energy Procedia, vol. 142, pp. 1539-1544. DOI:10.1016/j.egypro.2017.12.605 DOI: https://doi.org/10.1016/j.egypro.2017.12.605

P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan, and O. M. Srivastava. 2010. “Hydrogen generation by water electrolysis using carbon nanotube anode”, Int. J. Hydrog, vol. 35, pp. 3945-3950. DOI:10.1016/j.ijhydene.2010.01.139 DOI: https://doi.org/10.1016/j.ijhydene.2010.01.139

Z. D. Wei, M. B. Ji, S. G. Chen, Y. Liu, C. X. Sun, G. Z. Yin, P. K. Shen and S. H. Chan. 2007. “Water electrolysis on carbon electrodes enhanced by surfactant”, Electrochim. Acta, vol. 52, pp. 3323-3329. DOI:10.1016/j.electacta.2006.10.011 DOI: https://doi.org/10.1016/j.electacta.2006.10.011

Yaorong Li, M. Nagao, K. Kobayashi, Y. Jin, and T. Hibino. 2020. “A Cellulose Electrolysis Cell with Metal-Free Carbon Electrodes”, Catalysts, 10(1), pp.106. DOI:10.3390/catal10010106 DOI: https://doi.org/10.3390/catal10010106

G. Y.Lee, J. L. Song and J. S. Lee. 2016. “Reaction kinetics and phase transformation during hydrogen reduction of spherical Fe2O3 nanopowder agglomerates”, Powder Technol., vol. 302, pp. 215-221. DOI:10.1016/j.powtec.2016.07.038 DOI: https://doi.org/10.1016/j.powtec.2016.07.038

Q. Lyu, Y. Qie, X. Liu, C. Lan, J. Li and S. Liu. 2017. “Effect of Hydrogen Addition on Reduction Behavior of Iron Oxides in Gas-inyection Blas Furnace”, Thermochim. Acta, vol. 648, pp. 79-90. DOI: 10.1016/j.tca.2016.12.009 DOI: https://doi.org/10.1016/j.tca.2016.12.009

C. Yilmaz, J. Wendelstorf and T. Turek. 2017. “Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions”, J. Clean. Prod., vol. 154, pp. 488-501. DOI:10.1016/j.clepro.2017.03.162 DOI: https://doi.org/10.1016/j.jclepro.2017.03.162

Unknown autor. 2012. “Instructivo para determinar nitrógeno en agua”, Manuales AHMSA.

I. Puigdomenech. 2004. “Make Equilibrium Diagrams Using Sopisticated Algorithms (MEDUSA)” Inorganic Chemistry, Royal Institute of Technology, Stockholm, Sweden.

Chang, R. y College W. Química. México, DF. McGRAW-HILL INTERAMERICANA EDITORES, S.A. de C.V., 2002, pp. 220.

Diagrama de flujo del proceso experimental

Publicado

2024-12-04

Cómo citar

Puente Siller, D. M., González de la Cruz, J. M., Acuña Gutierrez, I. O., Vega Valdés, J. de J., López Corpus, J. A., & Perea Garduño, A. (2024). Generación electroquímica de hidrógeno utilizando agua industrial amoniacal y electrodos de grafito reciclado. Revista De Ciencias Tecnológicas, 7(4), 1–21. https://doi.org/10.37636/recit.v7n4e304

Artículos más leídos del mismo autor/a