Patients: A Feasibility Study,” Applied Sciences,
vol. 14, no. 1, p. 301, Dec. 2023, doi:
10.3390/app14010301.
[18] M. D. S. Manchola, L. J. A. Mayag, M. Munera,
and C. A. C. Garcia, “Impedance-based
Backdrivability Recovery of a Lower-limb
Exoskeleton for Knee Rehabilitation,” in 2019
IEEE 4th Colombian Conference on Automatic
Control (CCAC), IEEE, Oct. 2019, pp. 1–6. doi:
10.1109/CCAC.2019.8921278.
[19] V. C. H. Guzmán, E. J. L. Carrera, O. A. Blanco,
S. M. A. Oliver, and B. F. A. Gómez, “Diseño y
control de un sistema interactivo para la
rehabilitación de tobillo: TobiBot,” INGENIERÍA
MECÁNICA TECNOLOGÍA Y DESARROLLO,
vol. 5, pp. 255–264, 2014, URL:
https://www.scielo.org.mx/scielo.php?script=sci_
arttext&pid=S1665-73812014000200003,
[20] M. Alam, I. A. Choudhury, and A. Bin Mamat,
“Mechanism and Design Analysis of Articulated
Ankle Foot Orthoses for Drop-Foot,” The
Scientific World Journal, vol. 2014, pp. 1–14,
2014, doi: 10.1155/2014/867869.
[21] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.
C. T. van der Helm, and H. van der Kooij, “A
Series Elastic- and Bowden-Cable-Based
Actuation System for Use as Torque Actuator in
Exoskeleton-Type Robots,” Int J Rob Res, vol. 25,
no. 3, pp. 261–281, Mar. 2006, doi:
10.1177/0278364906063829.
[22] J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R.
Ekkelenkamp, E. H. F. Van Asseldonk, and H. van
der Kooij, “Design and Evaluation of the LOPES
Exoskeleton Robot for Interactive Gait
Rehabilitation,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 15,
no. 3, pp. 379–386, Sep. 2007, doi:
10.1109/TNSRE.2007.903919.
[23] M. S. Cherry, D. J. Choi, K. J. Deng, S. Kota, and
D. P. Ferris, “Design and Fabrication of an Elastic
Knee Orthosis: Preliminary Results,” in Volume 2:
30th Annual Mechanisms and Robotics
Conference, Parts A and B, ASMEDC, Jan. 2006,
pp. 565–573. doi: 10.1115/DETC2006-99622.
[24] J. Z. Chen and W. H. Liao, “Design, testing and
control of a magnetorheological actuator for
assistive knee braces,” Smart Mater Struct, vol. 19,
no. 3, p. 035029, Mar. 2010, doi: 10.1088/0964-
1726/19/3/035029.
[25] M. J. Claros, R. Soto, J. L. Gordillo, J. L. Pons, and
J. L. Contreras-Vidal, “Robotic Assistance of
Human Motion Using Active-Backdrivability on a
Geared Electromagnetic Motor,” Int J Adv Robot
Syst, vol. 13, no. 2, p. 40, Mar. 2016, doi:
10.5772/62331.
[26] B. Penzlin, M. E. Fincan, Y. Li, L. Ji, S. Leonhardt,
and C. Ngo, “Design and Analysis of a Clutched
Parallel Elastic Actuator,” Actuators, vol. 8, no. 3,
p. 67, Sep. 2019, doi: 10.3390/act8030067.
[27] J. Figueiredo, C. P. Santos, and J. C. Moreno,
“Assistance and rehabilitation of gait disorders
using active lower limb orthoses,” in 2015 IEEE
4th Portuguese Meeting on Bioengineering
(ENBENG), IEEE, Feb. 2015, pp. 1–6. doi:
10.1109/ENBENG.2015.7088837.
[28] I. A. Amaia, “Análisis dinámico de las fuerzas de
contacto órtesis pierna mediante un modelo
biomecánico tridimensional,” Tesis de Máster,
Universitat Politécnica de Catalunya, Barcelona,
2014, URL: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/ht
tps://biomec.upc.edu/wp-
content/uploads/theses/Ilzarbe-MSc-Thesis-
Analisis%20dinamico%20de%20las%20fuerzas%
20de%20contacto%20ortesis-
pierna%20mediante%20un%20modelo%20biome
canico%20tridimensional.pdf
[29] S. A. Fesharaki et al., “The Effects of Knee
Orthosis with Two Degrees of Freedom Joint
Design on Gait and Sit-to-Stand Task in Patients
with Medial Knee Osteoarthritis,” Sultan Qaboos
University Medical Journal [SQUMJ], vol. 20, no.
4, pp. e324-331, Dec. 2020, doi:
10.18295/squmj.2020.20.04.008.
[30] E. Lugo, P. Ponce, A. Molina, and S. Castro, “Co-
simulación del Diseño Biomecánico para un
Exoesqueleto Robótico del Miembro Inferior,”
Revista Mexicana de Ingeniería Biomédica, vol. 2,
pp. 143–156, Aug. 2014, URL:
https://www.researchgate.net/publication/273327
998_Co-
simulacion_del_Diseno_Biomecanico_para_un_E
xoesqueleto_Robotico_del_Miembro_Inferior
[31] M. V. Urdaniz, M. A. Ortiz, A. A. Bonardi, and G.
G. Gentiletti, “Diseño y Simulación de una Órtesis
Robótica para Rehabilitación de la Marcha,” 2009,
URL:
https://www.researchgate.net/publication/242363
654_Diseno_y_Simulacion_de_una_Ortesis_Rob
otica_para_Rehabilitacion_de_la_Marcha
[32] L. Ángel, M. P. Pérez, Q. C. Díaz, and C.
Mendoza, “ADAMS/MATLAB Co-Simulation:
Dynamic Systems Analysis and Control Tool,”
Applied Mechanics and Materials, vol. 232, pp.
527–531, Nov. 2012, doi:
10.4028/www.scientific.net/AMM.232.527.