Approaches for Next-Generation Sequencing
Bioinformatic Pipeline Validation,” The Journal of
Molecular Diagnostics, vol. 25, no. 1, pp. 3–16, Jan.
2023, https://doi:10.1016/j.jmoldx.2022.09.007.
[22] E. W. Sayers et al., “GenBank 2024
Update,” Nucleic Acids Res, vol. 52, no. D1, pp.
D134–D137, Jan. 2024,
https://doi:10.1093/nar/gkad903.
[23] A. J. Lee and S. S. Wallace, “Hide and
seek: How do DNA glycosylases locate oxidatively
damaged DNA bases amidst a sea of undamaged
bases?,” Free Radic Biol Med, vol. 107, pp. 170–
178, Jun. 2017,
https://doi:10.1016/j.freeradbiomed.2016.11.024.
[24] D. Jurkovicova, C. M. Neophytou, A. Č.
Gašparović, and A. C. Gonçalves, “DNA Damage
Response in Cancer Therapy and Resistance:
Challenges and Opportunities,” Int J Mol Sci, vol.
23, no. 23, p. 14672, Nov. 2022,
https://doi:10.3390/ijms232314672.
[25] E. A. Mullins, A. A. Rodriguez, N. P.
Bradley, and B. F. Eichman, “Emerging Roles of
DNA Glycosylases and the Base Excision Repair
Pathway,” Trends Biochem Sci, vol. 44, no. 9, pp.
765–781, Sep. 2019, doi:
https://10.1016/j.tibs.2019.04.006.
[26] Y. Ouyang et al., “Recent advances in
biosensor for DNA glycosylase activity detection,”
Talanta, vol. 239, p. 123144, Mar. 2022,
https://doi:10.1016/j.talanta.2021.123144.
[27] A. F. Palazzo and Y. M. Kang, “GC‐
content biases in protein‐coding genes act as an
‘mRNA identity’ feature for nuclear export,”
BioEssays, vol. 43, no. 2, Feb. 2021,
https://doi:10.1002/bies.202000197.
[28] Y. S. Rao, X. W. Chai, Z. F. Wang, Q.
H. Nie, and X. Q. Zhang, “Impact of GC content on
gene expression pattern in chicken,” Genetics
Selection Evolution, vol. 45, no. 1, p. 9, Dec. 2013,
https://doi:10.1186/1297-9686-45-9.
[29] M. Courel et al., “GC content shapes
mRNA storage and decay in human cells,” Elife, vol.
8, Dec. 2019,https://doi:10.7554/eLife.49708.
[30] A. R. Poetsch, S. J. Boulton, and N. M.
Luscombe, “Genomic landscape of oxidative DNA
damage and repair reveals regioselective protection
from mutagenesis,” Genome Biol, vol. 19, no. 1, pp.
215–237, Dec. 2018,https://doi:10.1186/s13059-
018-1582-2.
[31] L. Degrève, C. A. Fuzo, and A. Caliri,
“Extended secondary structures in proteins,”
Biochimica et Biophysica Acta (BBA) - Proteins and
Proteomics, vol. 1844, no. 2, pp. 384–388, Feb.
2014, https://doi:10.1016/j.bbapap.2013.10.005.
[32] P. Craveur et al., “Protein flexibility in
the light of structural alphabets,” Front Mol Biosci,
vol. 2, May 2015,
https://doi:10.3389/fmolb.2015.00020.
[33] W. Yang, Y. Liu, and C. Xiao, “Deep
metric learning for accurate protein secondary
structure prediction,” Knowl Based Syst, vol. 242, p.
108356, Apr.
2022,https://doi:10.1016/j.knosys.2022.108356.
[34] S. Arce-Solano and E. Hernández-
Carvajal, “Implementación de las técnicas de RMN
y cristalografía de macromoléculas para la
caracterización estructural de proteínas de interés
biomédico,” Revista Tecnología en Marcha, Sep.
2019, https://doi:10.18845/tm.v32i9.4627.
[35] P. Choudhary, S. Anyango, J. Berrisford,
M. Varadi, J. Tolchard, and S. Velankar, “Unified
access to up-to-date residue-level annotations from
UniProt and other biological databases for PDB data
via PDBx/mmCIF files,” bioRxiv, 2022,
https://doi.org/10.1038/s41597-023-02101-6
[36] P. Katsonis, K. Wilhelm, A. Williams,
and O. Lichtarge, “Genome interpretation using in
silico predictors of variant impact,” Hum Genet, vol.
141, no. 10, pp. 1549–1577, Oct. 2022,
https://doi:10.1007/s00439-022-02457-6.
[37] O. Carugo and K. Djinović-Carugo,
“Structural biology: A golden era,” PLoS Biol, vol.
21, no. 6, p. e3002187, Jun. 2023,
https://doi:10.1371/journal.pbio.3002187
[38] V. Cicaloni, A. Trezza, F. Pettini, and O.
Spiga, “Applications of in Silico Methods for
Design and Development of Drugs Targeting
Protein-Protein Interactions,” Curr Top Med Chem,
vol. 19, no. 7, pp. 534–554, May 2019,
https://doi:10.2174/1568026619666190304153901.
[39] Q. Jiang, X. Jin, S.-J. Lee, and S. Yao,
“Protein secondary structure prediction: A survey of
the state of the art,” J Mol Graph Model, vol. 76, pp.
379–402, Sep. 2017,
https://doi:10.1016/j.jmgm.2017.07.015.
[40] P. Prorok et al., “Evolutionary Origins of
DNA Repair Pathways: Role of Oxygen Catastrophe
in the Emergence of DNA Glycosylases,” Cells, vol.
10, no. 7, p. 1591, Jun. 2021,
https://doi:10.3390/cells10071591.
[41] M. F. Aziz and G. Caetano-Anollés,
“Evolution of networks of protein domain
organization,” Sci Rep, vol. 11, no. 1, p. 12075, Jun.
2021, https://doi:10.1038/s41598-021-90498-8.
[42] S. H. Wilson, “The dark side of DNA
repair,” Elife, vol. 3, May 2014,
https://doi:10.7554/eLife.03068.
[43] C. H. Trasviña-Arenas, M. Demir, W.-J.
Lin, and S. S. David, “Structure, function and