Revista de Ciencias Tecnológicas (RECIT). Volumen 7 (2): 345.
12 ISSN: 2594-1925
Absorption Materials of Carbon Nanotube
Buckypaper ”. Materials, vol.14, no. 20 6202,2021.
https://doi.org/10.3390/ma14206202
[17] Z.Wang, C. Chen, J. Chen, y G. Zheng, “ 3D
Soft-Landing Dynamic Theoretical Model of Legged
Lander: Modeling and Analysis”. Aerospace, vol. 10,
no. 9, pp. 811,2023.
https://doi.org/10.3390/aerospace10090811
[18] N. Saeki, S. Hara, M. Otsuki, y Y. Yamada,
“Analytical and experimental investigation of base–
extension separation mechanism for spacecraft
landing”, J. Spacecr. Rockets, vol. 52, núm. 3, pp.
896–916, 2015. https://doi.org/10.2514/1.A32956
[19] C. Wang, H. Nie, J. Chen, y H. P. Lee, “Damping
force analysis and optimization of a lunar lander with
MRF”, J. Aerosp. Eng., vol. 33, núm. 3, 2020.
https://doi.org/10.1061/(ASCE)AS.1943-
5525.0001115
[20] S. Schröder, B. Reinhardt, C. Brauner, I.
Gebauer, y R. Buchwald, “Development of a
Marslander with crushable shock absorber by virtual
and experimental testing”, Acta Astronaut., vol. 134,
pp. 65–74, 2017.
https://doi.org/10.1016/j.actaastro.2017.01.023
[21] Y. Liu, S. Song, M. Li, y C. Wang, “Landing
stability analysis for lunar landers using computer
simulation experiments”, Int. J. Adv. Robot. Syst.,
vol. 14, no. 6, p. 172988141774844, 2017.
https://doi.org/10.1177/1729881417748441
[22] G. Aravind et al., “Design, analysis and stability
testing of lunar lander for soft-landing”, Mater.
Today, vol. 24, pp. 1235–1243, 2020.
https://doi.org/10.1016/j.matpr.2020.04.438
[23] W. Wei et al., “Research on aluminum
honeycomb buffer device for soft landing on the lunar
surface”, Int. J. Aerosp. Eng., vol. 2021, pp. 1–20,
2021. https://doi.org/10.1155/2021/7686460
[24] S. Ji y S. Liang, “DEM-FEM-MBD coupling
analysis of landing process of lunar lander
considering landing mode and buffering mechanism”,
Adv. Space Res., vol. 68, no. 3, pp. 1627–1643, 2021.
DOI:10.1016/j.asr.2021.03.034
[25] S. Liang y S. Ji, “DEM-FEM coupling analysis
of safe landing of reentry capsule considering landing
attitude and rebound response”, J. Aerosp. Eng., vol.
34, no. 4, 2021.DOI:10.1061/(ASCE)AS.1943-
5525.0001267
[26] P. Jiang, S. Zhang, H. Yang, and Y. Li, “Suture
interface inspired self-recovery architected structures
for reusable energy absorption,” ACS Appl. Mater.
Interfaces, vol. 15, no. 36, pp. 43102–43110,
2023.DOI: 10.1021/acsami.3c06463
[27] X. Hou, P. Xue, Y. Wang, P. Cao, and T. Tang,
“Theoretical and discrete element simulation studies
of aircraft landing impact,” J. Braz. Soc. Mech. Sci.
Eng., vol. 40, no. 3, 2018. DOI:10.1007/s40430-018-
0983-1
[28] W. Dou, X. Qiu, Z. Xiong, Y. Guo, and L.
Zhang, “A footpad structure with reusable energy
absorption capability for deep space exploration
lander: Design and analysis,” Chin. J. Mech. Eng.,
vol. 36, no. 1, 2023.DOI:10.1186/s10033-023-00918-
1
[29] M. Li, Z. Deng, R. Liu, and H. Guo,
“Crashworthiness design optimisation of metal
honeycomb energy absorber used in lunar lander,”
Int. J. Crashworthiness, vol. 16, no. 4, pp. 411–419,
2011.DOI:10.1080/13588265.2011.596677
[30] J. Zhou, S. Jia, J. Qian, M. Chen, and J. Chen,
“Improving the buffer energy absorption
characteristics of movable lander-numerical and
experimental studies,” Materials (Basel), vol. 13, no.
15, p. 3340, 2020.
https://doi.org/10.3390/ma13153340
[31] Q. Estrada, D. Szwedowicz, A. Rodriguez-
Mendez, O. A. Gómez-Vargas, M. Elias-Espinosa,
and J. Silva-Aceves, “Energy absorption performance
of concentric and multi-cell profiles involving
damage evolution criteria,” Thin-Walled Struct., vol.
124, pp. 218–234, 2018.
https://doi.org/10.1016/j.tws.2017.12.013
[32] Y. Chen, G. Zhu, and Z. Wang,
“Crashworthiness optimization of tapered UD-CFRP
tube accounting for multiple loading pangles,” Int. J.