[36] S. Sulaiman, M. AlHajji, C. N. A. Jaafar,
F. A. Aziz, and T. Zuhair, “Effect of composite
material distribution and shape on energy
absorption systems,” Advances in Materials and
Processing Technologies, vol. 8, no. 1, pp. 1–10,
Jan. 2022, doi:
10.1080/2374068X.2020.1793265.
[37] S. Sulaiman, M. AlHajji, C. N. A. Jaafar,
F. A. Aziz, and T. Zuhair, “Effect of composite
material distribution and shape on energy
absorption systems,” Advances in Materials and
Processing Technologies, vol. 8, no. 1, pp. 1–10,
Jan. 2022, doi:
10.1080/2374068X.2020.1793265.
[38] J. J. de la Cuesta and H. Ghasemnejad,
“Improvement of Force History Pattern in
Composite Tubular Structures by Developed
Trigger Mechanisms,” Applied Composite
Materials, vol. 29, no. 5, pp. 1771–1794, Oct.
2022, doi: 10.1007/s10443-022-10040-5.
[39] T. Ran, Y. Ren, and H. Jiang, “Design and
Assessments of Gradient Chamfer Trigger for
Enhancing Energy-Absorption of CFRP Square
Tube,” Applied Composite Materials, Oct. 2022,
doi: 10.1007/s10443-022-10071-y.
[40] E. Cetin, A. Baykasoğlu, M. E. Erdin, and
C. Baykasoğlu, “Experimental investigation of
the axial crushing behavior of aluminum/CFRP
hybrid tubes with circular-hole triggering
mechanism,” Thin-Walled Structures, vol. 182,
p. 110321, Jan. 2023, doi:
10.1016/j.tws.2022.110321.
[41] D. Wang, B. Liu, and H. Liang,
“Investigation into design strategy of aluminum
alloy-CFRP hybrid tube under multi-angle
compression loading,” Int J Mech Sci, vol. 248,
p. 108207, Jun. 2023, doi:
10.1016/j.ijmecsci.2023.108207.
[42] E. F. Abdewi, S. Sulaiman, A. M. S.
Hamouda, and E. Mahdi, “Quasi-static axial and
lateral crushing of radial corrugated composite
tubes,” Thin-Walled Structures, vol. 46, no. 3,
pp. 320–332, Mar. 2008, doi:
10.1016/j.tws.2007.07.018.
[43] H. Jishi, R. Alia, and W. Cantwell, “The
energy-absorbing characteristics of tubular
sandwich structures,” Journal of Sandwich
Structures & Materials, vol. 24, no. 1, pp. 742–
762, Jan. 2022, doi:
10.1177/10996362211020457.
[44] P. H. Thornton, “Energy Absorption in
Composite Structures,” J Compos Mater, vol. 13,
no. 3, pp. 247–262, Jul. 1979, doi:
10.1177/002199837901300308.
[45] H. Yang, H. Lei, G. Lu, Z. Zhang, X. Li,
and Y. Liu, “Energy absorption and failure
pattern of hybrid composite tubes under quasi-
static axial compression,” Compos B Eng, vol.
198, p. 108217, Oct. 2020, doi:
10.1016/j.compositesb.2020.108217.
[46] E. Mahdi, A. M. S. Hamouda, and T. A.
Sebaey, “The effect of fiber orientation on the
energy absorption capability of axially crushed
composite tubes,” Materials & Design (1980-
2015), vol. 56, pp. 923–928, Apr. 2014, doi:
10.1016/j.matdes.2013.12.009.
[47] Z. Cui, Q. Liu, Y. Sun, and Q. Li, “On
crushing responses of filament winding
CFRP/aluminum and GFRP/CFRP/aluminum
hybrid structures,” Compos B Eng, vol. 200, p.
108341, Nov. 2020, doi:
10.1016/j.compositesb.2020.108341.
[48] A. Berndt, M. Laux, H. Oberlercher, R.
Heim, and F. O. Riemelmoser, “Additive
manufacturing of continuous carbon fiber tubes
and experimental investigation of the energy
absorption capability under quasi-static loading,”
Procedia Structural Integrity, vol. 34, pp. 105–
110, 2021, doi: 10.1016/j.prostr.2021.12.016.
[49] R. Jiang et al., “Energy Absorption
Characteristics of a CFRP-Al Hybrid Thin-
Walled Circular Tube under Axial Crushing,”
Aerospace, vol. 8, no. 10, p. 279, Sep. 2021, doi:
10.3390/aerospace8100279.
[50] J.-S. Kim, H.-J. Yoon, and K.-B. Shin, “A
study on crushing behaviors of composite
circular tubes with different reinforcing fibers,”
Int J Impact Eng, vol. 38, no. 4, pp. 198–207,
Apr. 2011, doi: 10.1016/j.ijimpeng.2010.11.007.