Finger Movements Using Electromyography and
Visualization in Opensim,” Sensors, vol. 22, no.
10, 2022, doi: 10.3390/s22103737.
[6] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng,
“Surface EMG-Based Inter-Session Gesture
Recognition Enhanced by Deep Domain
Adaptation,” Sensors, vol. 17, no. 3, 2017, doi:
10.3390/s17030458
[7] Marco Santello, Martha Flanders, and John F.
Soechting, “Postural Hand Synergies for Tool
Use,” J. Neurosci., vol. 18, no. 23, p. 10105, Dec.
1998, doi: 10.1523/JNEUROSCI.18-23-
10105.1998.
[8] D. Buongiorno et al., “Deep learning for
processing electromyographic signals: A
taxonomy-based survey,” Neurocomputing, vol.
452, pp. 549–565, Sep. 2021, doi:
10.1016/j.neucom.2020.06.139.
[9] E. Ayodele, S. A. R. Zaidi, Z. Zhang, J. Scott,
and D. McLernon, “Chapter 9 - A review of deep
learning approaches in glove-based gesture
classification,” in Machine Learning, Big Data,
and IoT for Medical Informatics, P. Kumar, Y.
Kumar, and M. A. Tawhid, Eds., Academic
Press, 2021, pp. 143–164. doi: 10.1016/B978-0-
12-821777-1.00012-4.
[10] R. Donati, V. Kartsch, L. Benini, and S.
Benatti, “BioWolf16: a 16-channel, 24-bit,
4kSPS Ultra-Low Power Platform for Wearable
Clinical-grade Bio-potential Parallel Processing
and Streaming,” in 2022 44th Annual
International Conference of the IEEE
Engineering in Medicine & Biology Society
(EMBC), Jul. 2022, pp. 2518–2522. doi:
10.1109/EMBC48229.2022.9871898.
[11] P. Huang et al., “Identification of Upper-
Limb Movements Based on Muscle Shape
Change Signals for Human-Robot Interaction,”
Computational and Mathematical Methods in
Medicine, vol. 2020, p. 5694265, Apr. 2020, doi:
10.1155/2020/5694265.
[12] Y. A. Jarrah et al., “High-density surface
EMG signal quality enhancement via optimized
filtering technique for amputees’ motion intent
characterization towards intuitive prostheses
control,” Biomedical Signal Processing and
Control, vol. 74, p. 103497, Apr. 2022, doi:
10.1016/j.bspc.2022.103497.
[13] R. Soangra, R. Sivakumar, E. R. Anirudh, S.
V. Reddy Y., and E. B. John, “Evaluation of
surgical skill using machine learning with
optimal wearable sensor locations,” PLOS ONE,
vol. 17, no. 6, p. e0267936, Jun. 2022, doi:
10.1371/journal.pone.0267936.
[14] A. Maheen et al., Human Hand Gesture
Recognition System Using Body Sensor
Network. 2021, p. 5. doi:
10.1109/ICRAI54018.2021.9651389.
[15] R. Esaa, H. jaber, and A. A. Jasim, “Features
selection for estimating hand gestures based on
electromyography signals,” Bulletin of Electrical
Engineering and Informatics, vol. Vol. 12, pp.
2087–2094, Aug. 2023, doi:
10.11591/eei.v12i4.5048.
[16] M. Aviles, L.-M. Sánchez-Reyes, R. Q.
Fuentes-Aguilar, D. C. Toledo-Pérez, and J.
Rodríguez-Reséndiz, “A Novel Methodology for
Classifying EMG Movements Based on SVM
and Genetic Algorithms,” Micromachines, vol.
13, no. 12, 2022, doi: 10.3390/mi13122108.
[17] B. Saeed et al., “Leveraging ANN and LDA
Classifiers for Characterizing Different Hand
Movements Using EMG Signals,” Arabian
Journal for Science and Engineering, vol. 46, no.
2, pp. 1761–1769, Feb. 2021, doi:
10.1007/s13369-020-05044-x.