properties of ordinary water substance for
general and scientific use”. IAPWS R6-95, pp. 1-
19, 2018.
http://www.iapws.org/relguide/IAPWS95-
2018.pdf
[8] G.F.C. Rogers, Y.R. Mayhew.
Thermodynamic and transport properties of
fluids: SI units. 4th ed. UK: Blackwell
Publishers, 1992.
[9] Z. Yuan, K. Herold. “Thermodynamic
properties of aqueous lithium bromide using a
multiproperty free energy correlation”. HVAC
and R Research, vol. 11: pp.377-393, 2005.
https://www.tandfonline.com/doi/abs/10.1080/1
0789669.2005.10391144
[10] W. Wagner and A. Prub. “The IAPWS
formulation 1995 for the thermodynamic
properties of ordinary water substance for
general and scientific use”. Journal of Physics
Chemical, vol. 31: pp. 387-535, 2002.
http://www.teos-
10.org/pubs/Wagner_and_Pruss_2002.pdf
[11] M.P. Verma. SteamTablesGrid: “An
activeX control for thermodynamic properties of
pure water”. Computers and Geosciences, vol 37:
582-587, 2011.
https://doi.org/10.1016/j.cageo.2010.02.012
[12] F. Mallamance, C. Corsaro, D. Mallamance,
S. Vasi, C. Vasi, H.E. Stanley. “Thermodynamic
properties of bulk and confined water”. The
Journal of Chemical Physics, vol. 141: pp. 141-
149, 2014.
https://doi.org/10.1063/1.4895548
[13] X. Zhong, X. Zhang, M. Saeed, Z. Li, J. Yu.
(2020). “Comparative study on water
thermodynamic property functions of TRACE
code”. Annals of Nuclear Energy, vol. 147:
107754, 2020.
https://doi.org/10.1016/j.anucene.2020.107754
[14] Y. Ma, X. Li, X. Wu. “Thermal–hydraulic
characteristics and flow instability analysis of an
HTGR helical tube steam generator”. Ann. Nucl.
Energy, vol. 73: pp. 484–495, 2014.
https://doi.org/10.1016/j.anucene.2014.07.031
[15] J. Yu, H. Liu, B. Jia. (2009). “Sub-channel
analysis of CANDU–SCWR and review of heat-
transfer correlations”. Prog. Nucl. Energy, vol.
51: pp. 246–252, 2009.
https://doi.org/10. 1016/j.pnucene.2008.05.002.
[16] X. Zhong, X. Zhang, J. Yu, M. Saeed, Y. Li,
Z. Chen, B. Tang, Y. Sun. “Development of an
improved non-equilibrium multi-region model
for pressurized water reactor pressurizer”. Ann.
Nucl. Energy, vol. 126: pp. 133–141, 2019.
https://doi.org/10.1016/j.anucene.2018.11.010.
[17] P.S. Arshi Banu, N.M. Sudharsan.
“Feasibility studies of single effect H2O-
LiBr+LiCl+LiNO3+LiCl vapour absorption
cooling system for solar based applications”. J.
Chem. Pharm. Sci, vol. 12: pp. 1-7, 2017.
https://jchps.com/specialissues/2017%20Special
%20Issue%2012/20171104_093252_AFM1707
3.pdf
[18] J. Wonchala, M. Hazledine, K.G. Boulama.
“Solution procedure and performance evaluation
for a water–LiBr absorption refrigeration
machine”. Energy, vol. 65: pp. 272–284, 2014.
https://doi.org/10.1016/j.energy.2013.11.087
[19] R. López-Zavala, N. Velázquez-Limón, L.
González-Uribe, J. Aguilar-Jiménez, J. Alvarez-
Mancilla, A. Acuña. A novel LiBr/H2O
absorption cooling and desalination system with
three pressure levels. Int. J. Refrig, vol. 99: pp.
469–478, 2019.
https://doi.org/10.1016/j.ijrefrig.2019.01.003
[20] X. She, Y. Yin, M. Xu, X. Zhang. “A novel
low-grade heat driven absorption refrigeration
system with LiCl–H2O and LiBr–H2O working
pairs”. Int. J. Refrig, vol 58: pp. 219–234, 2015.
https://doi.org/10.1016/j.ijrefrig.2015.06.016
[21] L. Domínguez-Inzunza, M. Sandoval-
Reyes, J. Hernández Magallanes, W. Rivera.
“Comparison of the performance of single effect,
half effect, double effect in series and inverse
absorption cooling systems operating with the
mixture H2O-LiBr”. Energy Procedia, vol. 57:
pp. 2534–2543, 2014.
https://doi.org/10.1016/j.egypro.2014.10.264