[24] F. Moles, J. Navarro-Esbrí, A. Mota-
Babiloni, and Á. Barragán-Cervera. “Theoretical
energy performance evaluation of different
single stage vapor compression refrigeration
configurations using R1234yf and R1234ze(E) as
working fluids”. Int. J. Refrig., vol. 44, pp. 141-
150, 2014.
https://doi.org/10.1016/j.ijrefrig.2014.04.025
[25] S. Bakhshipour, M.S. Valipour, and Y.
Pahamli. “Parametric analysis of domestic
refrigerator using PCM heat exchanger”. Int. J.
Refrig., vol. 83, pp. 1-13, 2017.
https://doi.org/10.1016/j.ijrefrig.2017.07.014
[26] C. Aprea, A. Greco, and A. Maiorino. “The
substitution of R134a with R744: An exergetic
analysis base on experimental data”. Int. J.
Refrig., vol. 36, pp. 2148-2159, 2013.
https://doi.org/10.1016/j.ijrefrig.2013.06.012
[27] Z. Ma, X. Liu, H. Wang, H. Li, and X.
Wang. “Off-design analysis of hydrocarbon-
based ejector expansion refrigeration cycle”.
Energy Proced., vol. 105, pp. 4685–4690, 2017.
https://doi.org/10.1016/j.egypro.2017.03.1015
[28] A.K. Al-Saayab, J. Navarro-Esbrí, and A.
Mota-Babiloni. “Energy, exergy and
environmental (3E) analysis of a compound
ejector-heat pump with low GWP refrigerants for
simultaneous data center cooling and district
heating”. Int. J. Refrig., vol. 133, 61-72, 2022.
https://doi.org/10.1016/j.ijrefrig.2021.09.036
[29] Y. Zhang, X. Wei, and X. Qin.
“Experimental study on energy, exergy, and
exergoeconomic analyses of a novel
compression/ejector transcritical CO2 heat pump
system with dual heat sources”. Energ. Convers.
Manage., vol. 271, 116343, 2022.
https://doi.org/10.1016/j.enconman.2022.11634
3
[30] J.L. Rodríguez-Muñoz, V. Pérez-García,
J.M. Belman-Flores, J.F. Ituna-Yudonago, and
A. Gallegos-Muñoz. “Energy and exergy
performance of the IHX position in ejector
expansion refrigeration systems”. Int. J. Refrig.,
vol. 93, pp. 122-131, 2018.
https://doi.org/10.1016/j.ijrefrig.2018.06.017
[31] J. Cen, P. Liu, and F. Jiang. “A novel
transcritical CO2 refrigeration cycle with two
ejectors”. Int. J. Refrig., vol. 35, no. 8, pp. 2233-
2239, 2012.
https://doi.org/10.1016/j.ijrefrig.2012.07.001
[32] Q. Chen, Y. Hwang, G. Yan, and J. Yu.
“Theoretical investigation on the performance of
an ejector enhanced refrigeration cycle using
hydrocarbon mixture R290/R600a”. App.
Therm. Eng., vol. 164, 114456, 2020.
https://doi.org/10.1016/j.applthermaleng.2019.1
14456
[33] H. Rostamnejad Takleh and V. Zare.
“Performance improvement of ejector expansion
refrigeration cycles employing a booster
compressor using different refrigerants:
Thermodynamic analysis and optimization”. Int.
J. Refrig., vol. 101, pp. 56-70, 2019.
https://doi.org/10.1016/j.ijrefrig.2019.02.031
[34] G. Yan, C. Cui, and J. Yu. “Energy and
exergy analysis of zeotropic mixture
R290/R600a vapor-compression refrigeration
cycle with separation condensation”. Int. J.
Refrig., vol. 53, pp. 155–162, 2015.
https://doi.org/10.1016/j.ijrefrig.2015.01.007
[35] D. Méndez-Méndez, V. Pérez-García, J.M.
Belman-Flores, J.M. Riesco-Ávila, J.M.
Barroso-Maldonado. “Internal heat exchanger
influence in operational cost and environmental
impact of an experimental installation using low
GWP refrigerant for HVAC conditions”.
Sustainability, vol. 14, pp. 1-19, 2022.