References
[1] S. Szczukiewicz, M. Magnini, and J. R.
Thome, “Proposed models, ongoing
experiments, and latest numerical simulations of
microchannel two-phase flow boiling,” Int. J.
Multiph. Flow, vol. 59, pp. 84-101, 2014.
https://doi.org/10.1016/j.ijmultiphaseflow.2013.
10.014
[2] C. B. Tibiriçá and G. Ribatski, “Flow boiling
in micro-scale channels - Synthesized literature
review,” Int. J. Refrig., vol. 36, no. 2, pp. 301-
324, 2013.
https://doi.org/10.1016/j.ijrefrig.2012.11.019
[3] A. Mukherjee and S. G. Kandlikar,
“Numerical simulation of growth of a vapor
bubble during flow boiling of water in a
microchannel,” Microfluid. Nanofluid., vol. 1,
pp. 137-145, 2005.
https://doi.org/10.1007/s10404-004-0021-8
[4] R. Zhuan and W. Wang, “Simulation of
subcooled flow boiling in a micro-channel,” Int.
J. Refrig., vol. 34, no. 3, pp. 781-795, 2011.
https://doi.org/10.1016/j.ijrefrig.2010.12.004
[5] R. Zhuan and W. Wang, “Flow pattern of
boiling in micro-channel by numerical
simulation,” Int. J. Heat Mass Transfer, vol. 55,
no. 5-6, pp. 1741-1753, 2012.
https://doi.org/10.1016/j.ijheatmasstransfer.2011
.11.029
[6] M. Magnini, B. Pulvirenti, and J. R. Thome,
“Numerical investigation of hydrodynamics and
heat transfer of elongated bubbles during flow
boiling in a microchannel,” Int. J. Heat Mass
Transfer, vol. 59, pp. 451-471, 2013.
https://doi.org/10.1016/j.ijheatmasstransfer.2012
.12.010
[7] M. Magnini, B. Pulvirenti, and J. R. Thome,
“Numerical investigation of the influence of
leading and sequential bubbles on slug flow
boiling within a microchannel,” Int. J. Therm.
Sci., vol. 71, pp. 36-52, 2013.
https://doi.org/10.1016/j.ijthermalsci.2013.04.01
8
[8] M. Magnini and J. R. Thome, “Computational
study of saturated flow boiling within a
microchannel in the slug flow regime,” ASME J.
Heat Transfer, vol. 138, no. 2, pp. 021502, 2016.
https://doi.org/10.1115/1.4031234
[9] Z. Guo, D. F. Feltcher, and B. S. Haynes, “A
review of computational modelling of flow
boiling in microchannels,” J. Comput.
Multiphase Flows, vol. 6, no. 2, pp. 79-110,
2014. https://doi.org/10.1260/1757-482X.6.2.79
[10] L. Cheng and J. R. Thome, “Cooling of
microprocessors using flow boiling of CO2 in a
micro-evaporator: Preliminary analysis and
performance comparison,” Appl. Therm. Eng.,
vol. 29, no. 11-12, pp. 2426-2432, 2009.
https://doi.org/10.1016/j.applthermaleng.2008.1
2.019
[11] U. Imke, “Porous media simplified
simulation of single- and two-phase flow heat
transfer in micro-channel heat exchangers,”
Chem. Eng. J., vol. 101, no. 1-3, pp. 295-302,
2004. https://doi.org/10.1016/j.cej.2003.10.012
[12] M. Ghajar and J. Darabi, “Numerical
modeling of evaporator surface temperature of a
micro loop heat pipe at steady-state condition,” J.
Micromech. Microeng. , vol. 15, no. 10, pp.
1963-1971, 2005. https://doi.org/10.1088/0960-
1317/15/10/024
[13] M. Magnini and O. K. Matar, “Optimizing
the design of micro-evaporators via numerical
simulations,” presented at the 16th UK Heat
Transfer Conference, pp. 163-168, 2021.
https://doi.org/10.1007/978-981-33-4765-6_30
[14] L. Cheng, G. Xia, and J. R. Thome, “Flow
boiling heat transfer and two-phase flow
phenomena of CO2 in macro- and micro-channel
evaporators: Fundamentals, applications and
engineering design,” Appl. Therm. Eng., vol.
195, pp. 117070, 2021.
https://doi.org/10.1016/j.applthermaleng.2021.1
17070
[15] J. B. Marcinichen and J. R. Thome, “New
novel green computer two-phase cooling cycle:
A model for its steady-state simulation,” in Proc.
of the 23rd Int. Conf. on Efficiency, Cost,
Optimization, Simulation and Environmental
Impact of Energy Systems-ECOS2010,
Lausanne, Switzerland 2010.