Fatigue of Materials II, pp. 3–15, 2013.
https://doi.org/10.1007/978-3-319-48105-0_1
[4] A. Bhaduri, “Mechanical properties and
working of metals and alloys,” Springer Series in
Materials Science, 2018.
https://doi.org/10.1007/978-981-10-7209-3
[5] P. Paris and F. Erdogan, “A critical analysis
of crack propagation laws,” Journal of Basic
Engineering, vol. 85, no. 4, pp. 528–533, 1963.
https://doi.org/10.1115/1.3656900
[6] R. Idris, S. Abdullah, P. Thamburaja, and M.
Z. Omar, “Prediction of fatigue crack growth rate
based on entropy generation,” Entropy, vol. 22,
no. 1, p. 9, 2019.
https://doi.org/10.3390/e22010009
[7] B. Hajshirmohammadi and M. M. Khonsari,
“A simple approach for predicting fatigue crack
propagation rate based on thermography,”
Theoretical and Applied Fracture Mechanics,
vol. 107, p. 102534, 2020.
https://doi.org/10.1016/j.tafmec.2020.102534
[8] H. Salimi, M. Pourgol-Mohammad, and M.
Yazdani, “Metal fatigue assessment based on
temperature evolution and thermodynamic
entropy generation,” International Journal of
Fatigue, vol. 127, pp. 403–416, 2019.
https://doi.org/10.1016/j.ijfatigue.2019.06.022
[9] J. J. R. Faria, L. G. A. Fonseca, A. R. de Faria,
A. Cantisano, T. N. Cunha, H. Jahed, and J.
Montesano, “Determination of the fatigue
behavior of mechanical components through
infrared thermography,” Engineering Failure
Analysis, vol. 134, p. 106018, 2022.
http://dx.doi.org/10.1016/j.engfailanal.2021.106
018
[10] R. Cappello, G. Meneghetti, M. Ricotta, and
G. Pitarresi, “On the correlation of temperature
harmonic content with energy dissipation in C45
steel samples under fatigue loading,” Mechanics
of Materials, vol. 168, p. 104271, 2022.
https://doi.org/10.3221/IGF-ESIS.49.09
[11] A. Sendrowicz, A. O. Myhre, S. W.
Wierdak, and A. Vinogradov, “Challenges and
accomplishments in mechanical testing
instrumented by in situ techniques: Infrared
thermography, digital image correlation, and
acoustic emission,” Applied Sciences, vol. 11, no.
15, p. 6718, 2021.
https://doi.org/10.3390/app11156718
[12] G. Meneghetti and M. Ricotta, “Estimating
the intrinsic dissipation using the second
harmonic of the temperature signal in tension‐
compression fatigue. part II: Experiments,”
Fatigue & Fracture of Engineering Materials &
Structures, vol. 44, no. 8, pp. 2153–2167, 2021.
https://doi.org/10.1111/ffe.13484
[13] G. Meneghetti, M. Ricotta, and G. Pitarresi,
“On relation between J-integral and heat energy
dissipation at the crack tip in stainless steel
specimens,” Frattura ed Integrità Strutturale,
vol. 13, no. 49, pp. 82–96, 2019.
https://doi.org/10.3221/IGF-ESIS.49.09
[14] K. N. Pandey and S. Chand, “Analysis of
temperature distribution near the crack tip under
constant amplitude loading,” Fatigue & Fracture
of Engineering Materials and Structures, vol. 31,
no. 5, pp. 316–326, 2008.
https://doi.org/10.1111/j.1460-
2695.2008.01218.x
[15] G. Meneghetti and M. Ricotta, “A heat
energy dissipation approach to elastic-plastic
fatigue crack propagation,” Theoretical and
Applied Fracture Mechanics, vol. 105, p.
102405, 2020.
https://doi.org/10.1016/j.tafmec.2019.102405