[30] J.C. Chedjou, H.B. Fotsin, P. Woafo, and
S. Domngang, Analog simulation of the
dynamics of a van der Pol oscillator coupled to a
Duffing oscillator, IEEE Trans. Circuits Syst.I,
Fundam. Theory Appl. 48, (2001) 748.
https://doi.org/10.1109/81.9281575
[31] A.P. Kuznetsov, N.V. Stankevich, L.V.
Turukina, Coupled van der Pol-Duffing
oscillators: phase dynamics and structure of
synchronization tongues, Physica D 238, (2009)
1203.
https://doi.org/10.1016/j.physd.2009.04.001
[32] M.S. Siewe, S.B. Yamgoué, E.M.
MoukamKakmeni, C. Tchawoua, Chaos
controlling self-sustained electromechanical
seismograph system based on the Melnikov
theory, Nonlinear Dyn. 62, (2010) 379.
https://doi.org/10.1007/s11071-010-9725-3
[33] U.E. Vincent and A. Kenfack,
Synchronization and bifurcation structures in
coupled periodically forced non-identical
Duffing oscillator, Phys. Scr. 77, (2008) 045005.
https://doi.org/10.1088/0031-
8949/77/04/045005
[34] U. Uriostegui, E.S. Tututi and G. Arroyo,
A new scheme of coupling and synchronizing
low-dimensional dynamical systems, Rev. Mex.
Fis. 67, (2021) 334.
https://doi.org/10.31349/RevMexFis.67.334
[35] J. Kengne, J.C. Chedjou, G. Kenne, K.
Kyamakya and G.H. Kom, Analog circuit
implementation and synchronization of a system
consisting of a van der Pol oscillator linearly
coupled to a Duffing oscillator, Nonlinear Dyn,
70, (2012) 2163. https://doi.org/10.1007/s11071-
012-0607-8
[36] J. Kengne, F. Kenmogne and V. Kamdoum
Tamba, Experiment on bifurcation and chaos in
coupled anisochronous self-excited systems:
Case of two coupled van der Pol-Duffing
oscillators, Journal of Nonlinear Dynamics,
2014, (2014) 815783.
https://doi.org/10.1155/2014/815783
[37] U. Uriostegui and E.S. Tututi,
Synchronization in the van der Pol-Duffing
system via elastic and dissipative couplings, Rev.
Mex. Fis. 68, (2022) 011402, pp.1–13.
https://doi.org/10.31349/RevMexFis.68.011402
[38] H. Zhang, D. Liu and Z. Wang, Controlling
Chaos: Suppression, Synchronization and
Chaotification, Springer, London, (2009).
https://doi.org/10.1007/978-1-84882-523-9
[39] S. Boccaletti, J. Kurths, G. Osipov, DL.
Valladares and CS. Zhou, The synchronization of
chaotic systems, Physics Reports 366, (2002)
101.
https://doi.org/10.1016/S0370-1573(02)00137-0
[40] L. M. Pecora and T. L. Carroll,
Synchronization of chaotic systems, Chaos, 25,
(2015) 097611.
https://doi.org/10.1063/1.4917383
[41] T-P Chang, Chaotic motion in forced
duffing system subject to linear and nonlinear
damping, Mathematical Problems in
Engineering, Vol. 2017, (2017) 3769870.
https://doi.org/10.1155/2017/3769870
[42] M.S. Siewe, C. Tchawoua, and P. Woafo,
Melnikov chaos in a periodically driven
Rayleigh-Duffing oscillator, Mechanics
Research Communications, Vol. 37, (2010) 363.
https://doi.org/10.1016/j.mechrescom.2010.04.0
01
[43] Y-Z. Wang, and F-M. Li, Dynamical
properties of Duffing-van der Pol oscillator
subject to both external and parametric
excitations with time delayed feedback control,
Journal of Vibration and Control, Vol. 21, (2015)
371. https://doi.org/10.1177/1077546313483160
[44] K. Ding, Master-Slave Synchronization of
Chaotic Φ6 Duffing Oscillators by Linear State
Error Feedback Control, Complexity Vol. 2019,
(2019) 3637902.
https://doi.org/10.1155/2019/3637902
[45] A. Buscarino, L. Fortuna, and L. Patane,
Master-slave synchronization of hyperchaotic
systems through a linear dynamic coupling,
Phys. Rev. E 100, (2019) 032215.