Finite element modeling of fatigue in speed reducer gears with radial and axial misalignment

Authors

  • José Omar Dávalos-Ramírez University Autonomous of Ciudad Juarez, Department of Industrial Engineering and Manufacturing. Av. Del Charro no. 450 Nte. Col. Partido Romero CP 32310, Ciudad Juarez, Chihuahua, Mexico. https://orcid.org/0000-0002-6612-5231
  • Uzziel Caldiño-Herrera University Autonomous of Ciudad Juarez, Department of Industrial Engineering and Manufacturing. Av. Del Charro no. 450 Nte. Col. Partido Romero CP 32310, Ciudad Juarez, Chihuahua, Mexico.
  • Shehret Tilvaldyev University Autonomous of Ciudad Juarez, Department of Industrial Engineering and Manufacturing. Av. Del Charro no. 450 Nte. Col. Partido Romero CP 32310, Ciudad Juarez, Chihuahua, Mexico.
  • Delfino Cornejo-Monroy University Autonomous of Ciudad Juarez, Department of Industrial Engineering and Manufacturing. Av. Del Charro no. 450 Nte. Col. Partido Romero CP 32310, Ciudad Juarez, Chihuahua, Mexico.
  • David Luviano-Cruz University Autonomous of Ciudad Juarez, Department of Industrial Engineering and Manufacturing. Av. Del Charro no. 450 Nte. Col. Partido Romero CP 32310, Ciudad Juarez, Chihuahua, Mexico. http://orcid.org/0000-0002-4778-8873

DOI:

https://doi.org/10.37636/recit.v328795

Keywords:

Finite element, Gear fatigue, Radial and axial misalignment.

Abstract

This paper presents a fatigue analysis of spur gears belong to speed reducers under radial and axial misalignment. The finite element method was employed to calculate the life cycles and the alternating stress in the spur gears. The misalignment was considered as a function of gear module, M. The radial misalignment was M0.2 and M0.5 and the axial misalignment was M0.2 and M0.3.  The analyzed mechanism corresponds to the pinon and gear of the first stage of an all-terrain vehicle speed reducer. In both misalignment conditions, the maximum reduction of life cycles occurs in pinion gear due to high alternating stresses as torque increases. Changes in the contact zone due to gear misalignment cause stress concentrations in the face and root teeth.

Downloads

Download data is not yet available.

References

A. Jangid and S. Kumar, “Modelling and Simulation Analyses for Bending Stresses in Involute Spur Gears by Finite Element Method,” International Journal of Applied Engineering Research, vol. 13, no. 12, pp. 10914-10923, 2018. https://www.ripublication.com/ijaer18/ijaerv13n12_111.pdf.

Q. Wen, Q. Du and X. Zhai, “An analytical method for calculating the tooth surface contact stress of spur gears with tip relief,” International Journal of Mechanical Sciences, vol. 151, pp. 170-180, 2019. https://doi.org/10.1016/j.ijmecsci.2018.11.007

J. Eng, S. Karuppanan and S. Patil, “Frictional stress analysis of spur gear with misalignments,” Journal of Mechanical Engineering and Sciences, vol. 12, no. 2, pp. 3566-3580, 2018. https://doi.org/10.15282/jmes.12.2.2018.4.316

Z. Hu and K. Mao, “An investigation of misalignment effects on the performance of acetal gears,” Tribology International, vol. 116, pp. 394-402, 2017. https://doi.org/10.1016/j.triboint.2017.07.029

N. Ghazaly, A. Kamel and M.O. Mousa, “Influence of misalignment and backlash on spur gear using fem,” International Journal of Mechanical and Production Engineering, vol. 2, no. 12, 2014. https://www.semanticscholar.org/paper/INFLUENCE-OF-MISALIGNMENT-AND-BACKLASH-ON-SPUR-GEAR-Ghazaly-KAMEL/e9066a5e1f15c0d53b605813767c597e4d099472.

A. Amani, V. Spitas and C. Spitas, “Influence of centre distance deviation on the interference of a spur gear pair,” International Journal of Powertrains, vol. 4, no. 4. 2015. https://doi.org/10.1504/IJPT.2015.073785

M.R. Lias, T.V. Rao, M Awang and M.A. Khan, “The Stress Distribution of Gear Tooth Due to Axial Misalignment Condition,” Journal of Applied Sciences, vol. 12, no. 23, pp.- 2404-2410, 2012. https://doi.org/10.3923/jas.2012.2404.2410

S. Li, “Effects of misalignment error, tooth modifications and transmitted torque on tooth engagements of a pair of spur gears,” Mechanism and Machine Theory, vol. 83, pp. 125-136. https://doi.org/10.1016/j.mechmachtheory.2014.09.011

C. Campos, J.O. Dávalos, D. Cornejo and A. Villanueva, “Optimización del diseño de los engranes del reductor de un vehículo todo terreno,” Mundo Fesc, vol. 9, no. 18, pp. 16-23, 2019. https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/443.

Brigs & Stratton (2019, Dec 15) Racing engines model 19 [Online]. Available: https://www.briggsracing.com/racing-engines/model-19

P.K. Purushottam, J. Rangaraya, C Tara and D. Sameer, “Life prediction of spur gear under fully reversed loading using total life approach and crack initiation method in FEM,” Aksaray University Journal of Science and Engineering, vol. 3, no. 2, pp. 82-98, 2019. https://doi.org/10.29002/asujse.498344.

S. Jeelani and M. Musial, “A study of cumulative fatigue damagein AISI 4130 steel,” Journal of Materials Science, vol. 21, pp. 2109-2113, 1986. https://doi.org/10.1007/BF00547954

Alternating forces in pinion gear teeth, a) base, b) axial M0.2, c) axial M0.3, d) radial M0.2, e) radial M0.5

Published

2020-06-30

How to Cite

Dávalos-Ramírez, J. O., Caldiño-Herrera, U., Tilvaldyev, S., Cornejo-Monroy, D., & Luviano-Cruz, D. (2020). Finite element modeling of fatigue in speed reducer gears with radial and axial misalignment. REVISTA DE CIENCIAS TECNOLÓGICAS, 3(2), 87–95. https://doi.org/10.37636/recit.v328795

Issue

Section

Research articles