Revista de Ciencias Tecnológicas. Volumen 3 (4): 213-221
220
ISSN: 2594-1925
19916, Dec. 2004.
http://dx.doi.org/10.1021/jp040650f.
[11] L. Chen, Y. Tang, K. Wang, C. Liu, and S.
Luo, “Direct electrodeposition of reduced
graphene oxide on glassy carbon electrode and its
electrochemical application,” Electrochem.
commun., vol. 13, no. 2, pp. 133–137, Feb. 2011.
http://dx.doi.org/10.1016/j.elecom.2010.11.033.
[12] J. Shi, X. Li, G. He, L. Zhang, and M. Li,
“Electrodeposition of high-capacitance 3D
CoS/graphene nanosheets on nickel foam for
high-performance aqueous asymmetric
supercapacitors,” J. Mater. Chem. A, vol. 3, no.
41, pp. 20619–20626, 2015.
http://dx.doi.org/10.1039/C5TA04464B.
[13] A. Di Luca et al., “Gradients in pore size
enhance the osteogenic differentiation of human
mesenchymal stromal cells in three-dimensional
scaffolds,” Sci. Rep., vol. 6, p. 22898, Mar. 2016.
http://dx.doi.org/10.1038/srep22898.
[14] C. M. Murphy and F. J. O’Brien,
“Understanding the effect of mean pore size on
cell activity in collagen-glycosaminoglycan
scaffolds,” Cell Adh. Migr., vol. 4, no. 3, pp.
377–381, Dec. 2010.
http://dx.doi.org/10.4161/cam.4.3.11747.
[15] P. Kasten, I. Beyen, P. Niemeyer, R.
Luginbühl, M. Bohner, and W. Richter, “Porosity
and pore size of β-tricalcium phosphate scaffold
can influence protein production and osteogenic
differentiation of human mesenchymal stem
cells: An in vitro and in vivo study,” Acta
Biomater., vol. 4, no. 6, pp. 1904–1915, Nov.
2008.
http://dx.doi.org/10.1016/j.actbio.2008.05.017.
[16] L. D. Guillen-Romero et al., “Synthetic
hydroxyapatite and its use in bioactive coatings,”
J. Appl. Biomater. Funct. Mater., vol. 17, no. 1,
2019.
http://dx.doi.org/10.1177/2280800018817463.
[17] J. Wosek, “Fabrication of Composite
Polyurethane/Hydroxyapatite Scaffolds Using
Solvent-Casting Salt Leaching Technique,”
Advances in Materials Science, vol. 15. p. 14,
2015. http://dx.doi.org/10.1515/adms-2015-
0003.
[18] S. Fragoso Angeles, R. Vera-Graziano, G.
L. Pérez González, A. L. Iglesias, L. E. Gómez
Pineda, and L. J. Villarreal-Gómez, “Síntesis y
Caracterización de Hidroxiapatita Sintética para
la Preparación de Filmes de PLGA/HAp con
Potencial Uso en Aplicaciones Biomédicas,”
ReCIBE, vol. 7, no. 2, pp. 93–116, 2018.
http://recibe.cucei.udg.mx/ojs/index.php/ReCIB
E/article/view/94.
[19] S. Koutsopoulos, “Synthesis and
characterization of hydroxyapatite crystals: a
review study on the analytical methods”. J
Biomed Mater Res. Vol. 62, Pp. 600–612, 2002.
https://doi.org/10.1002/jbm.10280
[20] A.F. Khan, M. Awais, A.S. Khan, “Raman
spectroscopy of natural bone and synthetic
apatites”. Appl Spectrosc Rev. Vol. 48, Pp. 329–
355, 2013.
https://doi.org/10.1080/05704928.2012.721107
[21] G.R. Sauer, W.B. Zunic, J. R. Durig,
“Fourier transform Raman spectroscopy of
synthetic and biological calcium phosphates”.
Calcif Tissue Int. Vol. 54, Pp. 414, 1994.
https://doi.org/10.1007/BF00305529
[22] A.-J. Wang et al., “Effect of sintering on
porosity, phase, and surface morphology of spray
dried hydroxyapatite microspheres,” J. Biomed.
Mater. Res. Part A, vol. 87A, no. 2, pp. 557–562,
2008, http://dx.doi.org/10.1002/jbm.a.31895.
[23] S. V Dorozhkin, “Calcium orthophosphate
deposits: Preparation, properties and biomedical
applications,” Mater. Sci. Eng. C, vol. 55, pp.
272–326, Oct. 2015, doi:
http://dx.doi.org/10.1016/j.msec.2015.05.033.
[24] C. F. C. Brown, J. Yan, T. T. Y. Han, D. M.
Marecak, B. G. Amsden, and L. E. Flynn, “Effect
of decellularized adipose tissue particle size and
cell density on adipose-derived stem cell
proliferation and adipogenic differentiation in
composite methacrylated chondroitin sulphate
hydrogels,” Biomed. Mater., vol. 10, no. 4, p.
45010, 2015, http://dx.doi.org/10.1088/1748-
6041/10/4/045010.
[25] D. N. Misra, Adsorption on and Surface
Chemistry of Hydroxyapatite. Springer US,
2013.