[36] J. Yang, L. Xiong, M. Li, and Q. Sun,
"Chitosan-Sodium Phytate Films with a Strong
Water Barrier and Antimicrobial Properties
Produced via One-Step-Consecutive-Stripping
and Layer-by-Layer-Casting Technologies.," J.
Agric. Food Chem., vol. 66, no. 24, pp. 6104-
6115, Jun. 2018,
https://doi.org/10.1021/acs.jafc.8b01890
[37] M. Gierszewska, J. Ostrowska-Czubenko,
and E. Chrzanowska, "pH-responsive
chitosan/alginate polyelectrolyte complex
membranes reinforced by tripolyphosphate,"
Eur. Polym. J., vol. 101, no. November 2017, pp.
282-290, 2018,
https://doi.org/10.1016/j.eurpolymj.2018.02.031
[38] J. Mirtič, J. Ilaš, and J. Kristl, "Influence of
different classes of crosslinkers on alginate
polyelectrolyte nanoparticle formation,
thermodynamics and characteristics,"
Carbohydr. Polym., vol. 181, pp. 93-102, Feb.
2018,
https://doi.org/10.1016/j.carbpol.2017.10.040
[39] Y. B. Sutar and V. N. Telvekar, "Chitosan
based copolymer-drug conjugate and its protein
targeted polyelectrolyte complex nanoparticles
to enhance the efficiency and specificity of low
potency anticancer agent," Mater. Sci. Eng. C,
vol. 92, no. January, pp. 393-406, 2018,
https://doi.org/10.1016/j.msec.2018.07.001
[40] D. R. Paul, "Elaborations on the Higuchi
model for drug delivery," Int. J. Pharm., vol. 418,
no. 1, pp. 13-17, Oct. 2011,
https://doi.org/10.1016/j.ijpharm.2010.10.037
[41] R. W. Korsmeyer, R. Gurny, E. Doelker, P.
Buri, and N. A. Peppas, "Mechanisms of solute
release from porous hydrophilic polymers," Int.
J. Pharm., vol. 15, no. 1, pp. 25-35, May 1983,
https://doi.org/10.1016/0378-5173(83)90064-9
[42] S. H. Baien et al., "Antimicrobial and
Immunomodulatory Effect of Gum Arabic on
Human and Bovine Granulocytes Against
Staphylococcus aureus and Escherichia coli,"
Frontiers in Immunology, vol. 10. p. 3119, 2020.
https://doi.org/10.3389/fimmu.2019.03119
[43] J. Rosenblatt, R. Reitzel, R. Hachem, A.-M.
Chaftari, and I. Raad, "Efficacy of a Novel
Synergistic Polygalacturonic + Caprylic Acid +
Nitroglycerin Antimicrobial Wound Ointment
Against Common Wound Pathogens in a Time-
to-Kill Biofilm Eradication Model," Open Forum
Infect. Dis., vol. 3, no. suppl_1, Oct. 2016,
https://doi.org/10.1093/ofid/ofw172.1803
[44] R. C. Goy, S. T. B. Morais, and O. B. G.
Assis, "Evaluation of the antimicrobial activity
of chitosan and its quaternized derivative on E.
Coli and S. aureus growth," Brazilian J.
Pharmacogn., vol. 26, no. 1, pp. 122-127, 2016,
https://doi.org/10.1016/j.bjp.2015.09.010
[45] E. I. Rabea, M. E. T. Badawy, C. V. Stevens,
G. Smagghe, and W. Steurbaut, "Chitosan as
antimicrobial agent: Applications and mode of
action," Biomacromolecules, vol. 4, no. 6, pp.
1457-1465, 2003,
https://doi.org/10.1021/bm034130m
[46] R. C. Goy, D. De Britto, and O. B. G. Assis,
"A review of the antimicrobial activity of
chitosan," Polimeros, vol. 19, no. 3, pp. 241-247,
2009,
https://doi.org/10.1590/S0104-
14282009000300013
[47] J. D. Smart, "The basics and underlying
mechanisms of mucoadhesion," Adv. Drug
Deliv. Rev., vol. 57, no. 11, pp. 1556-1568, 2005,
https://doi.org/10.1016/j.addr.2005.07.001
[48] N. A. Peppas and J. J. Sahlin, "Hydrogels as