Revista de Ciencias Tecnológicas (RECIT). Volumen 2 (1): 45-48
48
ISSN: 2594-1925
QHE. As a future work, other type of thermodynamic
cycles such as the Otto cycle or Stirling cycle can be
analyzed to determine how the dimensionality and
geometry affects their efficiencies.
References
[1] S. Carnot, “Réflexions sur la puissance motrice du feu”.
Paris, Annales scientifiques de l’É.N.S. 2e série, tome 1, p. 393-
457, 1872.
http://www.numdam.org/item?id=ASENS_1872_2_1__393_0
[2] J. E. Geusic, E. O. Schulz-DuBios, and H. E. D. Scovil,
“Quantum equivalent of the Carnot cycle,” Phys. Rev., vol.
156(2), pp. 343. 1967. https://doi.org/10.1103/PhysRev.156.343
[3] C. M. Bender, D. C. Brody, and B. K. Meister, “Quantum
mechanical Carnot engine,” J. Phys. A. Math. Gen., vol. 33, no.
24, pp. 4427–4436, 2000. https://doi.org/10.1088/0305-
4470/33/24/302
[4] H. T. Quan, Y. Liu, C. P. Sun, and F. Nori, “Quantum
thermodynamic cycles and quantum heat engines,” Phys. Rev. E,
vol. 76, no. 3, p. 31105, Sep. 2007.
https://doi.org/10.1103/PhysRevE.76.031105
[5] H. T. Quan, “Quantum thermodynamic cycles and quantum
heat engines. II.,” Phys. Rev. E, vol. 79, no. 4, p. 41129, 2009.
https://doi.org/10.1103/PhysRevE.79.041129
[6] T. D. Kieu, “The second law, Maxwell's demon, and work
derivable from quantum heat engines,” Phys. Rev. Lett., vol.
93(14), pp.140403. 2004.
https://doi.org/10.1103/PhysRevLett.93.140403
[7] S. Abe and S. Okuyama, “Similarity between quantum
mechanics and thermodynamics: Entropy, temperature, and
Carnot cycle,” Phys. Rev. E, vol. 83, no. 2, p. 21121, Feb. 2011.
https://doi.org/10.1103/PhysRevE.83.021121
[8] J. Wang, J. He, and Z. Wu, “Efficiency at maximum power
output of quantum heat engines under finite-time operation,”
Phys. Rev. E, vol. 85, no. 3, p. 31145, Mar. 2012.
https://doi.org/10.1103/PhysRevE.85.031145
[9] S. Abe, “General formula for the efficiency of quantum-
mechanical analog of the Carnot engine,” Entropy, vol. 15(4),
pp. 1408. 2013. https://doi.org/10.3390/e15041408
[10] B. Zwiebach, A First Course in String Theory, 2nd ed.
Cambridge: Cambridge University Press, 2009.
https://doi.org/10.1017/CBO9780511841620
[11] P. P. Hofer, J.-R. Souquet, and A. A. Clerk, “Quantum heat
engine based on photon-assisted Cooper pair tunneling,” Phys.
Rev. B, vol. 93, no. 4, p. 41418, 2016.
https://doi.org/10.1103/PhysRevB.93.041418
[12] P. P. Hofer, J. B. Brask, M. Perarnau-Llobet, and N.
Brunner, “Quantum Thermal Machine as a Thermometer,” Phys.
Rev. Lett., vol. 119, no. 9, p. 90603, Sep. 2017.
https://doi.org/10.1103/PhysRevLett.119.090603
[13] M. Campisi and R. Fazio, “The power of a critical heat
engine,” Nat. Commun., vol. 7, no. 1, p. 11895, 2016.
https://doi.org/10.1038/ncomms11895
[14] R. Shankar, “Principles of quantum mechanics”. New
York: Plenum Press. 1994. https://doi.org/10.1007/978-1-4757-
0576-8