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Resumen. - Calculamos la eficiencia de un ciclo de Carnot cuántico para una partícula confinada en dos 

pozos de potencial infinitos diferentes, un pozo de potencial cilíndrico de radio variable y un pozo de 

potencial bidimensional cuadrado con periodicidad en uno de sus lados. Encontramos que la eficiencia 

depende directamente de la dimensionalidad y la geometría del pozo que confina a la partícula. 
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Abstract. - We calculate the efficiency of a quantum Carnot cycle for a particle confined in two different 

infinite potential wells, a cylindrical potential well of variable radius and a two-dimensional square 

potential well with a periodicity in one of it sides. We find that the efficiency depends directly on the 

dimensionality and geometry of the well that confined the particle. 
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1. Introduction 

 

A classical heat engine is a device that extracts energy 

𝑄𝐻 from a high temperature heat source, it generates 

work 𝑊 with an amount of this energy and the rest is 

release into a low temperature drain. The efficiency 𝜂 

of a heat engine is defined by 𝜂= 𝑊/𝑄𝐻. It is well 

known that the heat engine reaches the highest 

possible efficiency following Carnot cycle model [1]. 

This cycle consists in a gas confined by a cylinder 

with a movable piston. Although classical heat 

engines have been extensively studied, it is of interest 

to study the systems and processes that   could 

increase their efficiency. In recent years, with the 

developments of nanotechnology and quantum 

information processing, the study of quantum systems 

began to attract more attention. Consequently, the 
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Quantum Heat Engines (QHE) have been proposed 

theoretically [2-13]. In QHE, rather than having a gas 

confined in a cylinder with a movable piston, it is 

considered a single particle confined by a quantum 

potential well that walls play the role of the piston by 

moving in and out. Current studies on QHE have 

considered different type of potential wells, for 

example, a single particle confined by one (1D), two 

(2D) or three-dimensional (3D) infinite square 

potential well [3-5]. Based on this, in the present paper 

we further calculate the efficiency of a quantum 

Carnot cycle considering a single particle confined by 

two different types of potential wells, an infinite 

cylindrical potential well and an infinite 2D square 

potential well with periodicity, as to our best 

knowledge, these cases have not been considered. 

Comparison between these two cases enable us to 

extend our understanding about the dimensionality 

and geometry effects of quantum confinement on the 

efficiency of a QHE. 

 

2. Methodology 

 

We consider a particle of mass m, confined by two 

different types of quantum potential wells: an infinite 

cylindrical potential well (CPW) of radius 𝑟, in this 

case the particle is confined in the space inside the 

CPW. Also, we consider an infinite 2D square 

potential well (SPW) of length 𝑎 that has periodicity 

every 2𝜋𝑅 in the 𝑦 direction, thus the space where the 

particle moves are now on a cylinder that has length 𝑎 

and circumference 2𝜋𝑅. 

 

2.1 Schrödinger equation and energy eigenvalues 

 

We start from the time independent Schrödinger 

equation 

 

 
where ℏ is the Planck constant, 𝑉 represents the 

potential, 𝜓 is the wave function, 𝐸 are the eigen 

energies obtained by the expectation value of the 

Hamiltonian [14], and ∇2 is the Laplace operator in the 

corresponding coordinates of each of the potential 

wells, i.e., in cylindrical coordinates for the CPW and 

in 2D Cartesian coordinates for the SPW. We shall use 

the symbol 𝑆 to denote the length of the different types 

of potential wells, i.e., 𝑆 = 𝑟, 𝑎. Once the energies 𝐸 

of each case is obtained (see Table 1), we calculated 

the force 𝐹 exerted on the wall of the wells, which is 

defined as the negative derivative of the energy [3]. 

 
where the length 𝑆 may vary. From table 1, we can see 

that each energy level state 𝐸𝑘,𝑙 is inversely 

proportional to the length of the well, i.e., 𝐸𝑘,𝑙 
decreases as the length of the of the well increases, 

and vice versa, in this sense we can imagine that the 

walls of the potential well can move like a piston in a 

classical thermodynamics system [3]. 

 
Table 1. Energies obtained in each potential well. Here 𝑘, 𝑙 = 

1,2,3, … are quantum numbers and zkl is the kth cero of the 

Bessel function of order one. 

 
 2.2 Quantum Carnot cycle 

 

The authors of Ref. 3 calculated the efficiency of a 

quantum Carnot cycle by using a single particle 

confined by a 1D infinite square potential well. Using 

the procedure described in Ref. 3, we further 

investigate the efficiency of a quantum Carnot cycle 

by considering different type of potential well that 

have not been reported. The quantum analogue of 

classical Carnot cycle consists of four processes 

described below and illustrated in figure 1. 

 

1. Isothermal expansion. Starting at the ground 

state, which corresponds to the potential well of length 

𝑆1, we expand isothermally this length up to 𝑆2 and 

excite the second energy state of the system. In this 

process, a force 𝐹1 is applied and an amount of energy 

𝑄𝐻 is absorbed by the system. 
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2. Adiabatic expansion. The expansion continues 

adiabatically up to 𝑆3 applying a force 𝐹2 on the wall, 

and the system remains in the second energy state. 

3. Isothermal compression. We compress 

isothermally the length of the well down to 𝑆4 until 

the system is back in the ground state. A force 𝐹3 is 

applied. 

4. Adiabatic compression. The compression 

continues down to 𝑆1, applying a force 𝐹4 on the wall. 

During this process the system remains in the ground 

state. 

 

The area of the closed loop in figure 1 represents the 

work 𝑊 done in a single cycle of the quantum Carnot 

engine [3]. There is an associated force 𝐹 to each of 

the four process, from these, we calculate the total 

work 𝑊 done during a full cycle by evaluating the 

following integrals. 

 

 

 

 
Figure 1. Illustration of a four-step quantum Carnot cycle, where 

S denote the length of the different types of potential wells and 

F is the force exerted on the wall of the wells. 

 

We also calculate the energy 𝑄𝐻 absorbed by the 

system during the isothermal expansion, which is 

given by 

 

 

Therefore, calculating 𝑊 and 𝑄𝐻 for the CPW and 

SPW, we finally calculate the efficiency 𝜂 = 

𝑊/𝑄𝐻 of each case. 

 
Table 2. Efficiency obtained in each potential well as a function 

of its length. Here 𝑧11 ≈ 3.8317 and 𝑧01 ≈ 2.4048. 

 
3. Results and Discussions 

 

In the case of the SPW, we remained unchanged the 

non-periodical side on the 𝑥 direction and the radius 

𝑅 of the periodicity on the other side was varied. For 

the CPW, the parameter that was varied was the radius 

of the cylinder. For each case, the procedure indicated 

in the methodology section was developed. The 

efficiencies obtained are shown in Tables 2 and 3. 

 
Table 3. Efficiency of each potential well as a function of its 

energy level states 

 
4. Conclusions 

 

It was found, from the efficiencies shown above, that 

the efficiency of the quantum Carnot cycle depends of 

the length of the potential well. It should be noted that 

the importance of this work relies in the fact that the 

efficiency changes as a function of the geometry and 

dimension of the potential well that confined the 

single particle, this could help for future works to find 

a QHE with a higher efficiency and possible 

applications such as those proposed in Ref. 11, 12 and 

13, where possible applications are proposed for a 
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QHE. As a future work, other type of thermodynamic 

cycles such as the Otto cycle or Stirling cycle can be 

analyzed to determine how the dimensionality and 

geometry affects their efficiencies. 
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