Revista de Ciencias Tecnológicas (RECIT). Volumen 1 (2): 54-57.
57
ISSN: 2594-1925
Los autores agradecen la financiación de esta
investigación con los proyectos 300/1377, 300/1474 y
300/6/N/84/19 de las convocatorias internas UABC.
Además, se agradece a UABC y CNYN por
proporcionar soporte de laboratorio en síntesis y
caracterización de los materiales. Estamos muy
agradecidos con M. en C. Martha Eloísa Aparicio Ceja,
M. en C. Israel Gradilla Martínez, Antonio Gómez y
Gabriela Díaz por sus contribuciones a este trabajo de
investigación.
Referencias
[1] S. Mu, Z. Wu, Y. Wang, S. Qi, X. Yang, and D. Wu,
“Formation and characterization of cobalt oxide layers on
polyimide films via surface modification and ion-exchange
technique,” Thin Solid Films, vol. 518, no. 15, pp. 4175–
4182, 2010. https://doi.org/10.1016/j.tsf.2009.12.004
[2] Y. Yamada, K. Yano, Q. Xu, and S. Fukuzumi,
“Cu/Co
3
O
4
Nanoparticles as Catalysts for Hydrogen
Evolution from Ammonia Borane by Hydrolysis,” J. Phys.
Chem. C, vol. 114, no. 39, pp. 16456–16462, Oct. 2010.
https://doi.org/10.1021/jp104291s
[3] R. Alanís-Oaxaca and J. Jiménez-Becerril, “Titanium
Oxide Modification with Oxides of Mixed Cobalt Valence
for Photocatalysis,” J. Mex. Chem. Soc., vol. 54, pp. 164–
168, 2010.
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pi
d=S1870-249X2010000300007&lng=en&nrm=iso
[4] C.-W. Tang, M.-C. Kuo, C.-J. Lin, C.-B. Wang, and S.-
H. Chien, “Evaluation of carbon monoxide oxidation over
CeO2/Co3O4 catalysts: Effect of ceria loading,” Catal.
Today, vol. 131, no. 1, pp. 520–525, 2008.
https://doi.org/10.1016/j.cattod.2007.10.026
[5] A. K. Rausch, E. van Steen, and F. Roessner, “New
aspects for heterogeneous cobalt-catalyzed hydroamination
of ethanol,” J. Catal., vol. 253, no. 1, pp. 111–118, 2008.
https://doi.org/10.1016/j.jcat.2007.10.013
[6] H. Wu et al., “Co3O4 particles grown over
nanocrystalline CeO2: influence of precipitation agents and
calcination temperature on the catalytic activity for methane
oxidation,” Catal. Sci. Technol., vol. 5, no. 3, pp. 1888–
1901, 2015. https://doi.org/10.1039/C4CY01158A
[7] S. Sun, X. Zhao, M. Yang, L. Ma, and X. Shen, “Facile
and Eco-Friendly Synthesis of Finger-Like Co3O4
Nanorods for Electrochemical Energy Storage,”
Nanomaterials, vol. 5, no. 4, pp. 2335–2347, Dec. 2015.
https://doi.org/10.3390/nano5042335
[8] National Emissions Invetory, version 2 U.S.
Environmental Protection Agency 2012, North Carolina.
2008. https://www.epa.gov/air-emissions-inventories/2008-
national-emissions-inventory-nei-data
[9] Joint Committee on Powder Diffraction Standards
(JCPDS)-International Centre for Diffraction Data. (ICDD).
15-0755, 44-1159, 43-1035, 1996. https://www.icdd.com/
[10] D. Cullity, “Elements of X-ray Diffraction”, second
edition, Addison-Wesley Publishing Company, Inc. Notre
Dame, Indiana, U.S.A. 1978.
https://www.pearson.com/us/higher-
education/product/Cullity-Elements-of-X-Ray-Diffraction-
2nd-Edition/9780201011746.html
[11] S. Brunauer, P. H. Emmett and E. Teller, “Adsorption
of Gases in Multimolecular Layers,” J. Amer. Chem. Soc.,
vol. 60, pp. 309-319, 1938.
https://doi.org/10.1021/ja01269a023
[12] W. Kraus and G. Nolse. Federal Institute for Materials
Research and Testing Rudower Chausse 5, 12489 Berlin,
Germany. Powder Cell for Windows version 2.4. 2000.
http://www.ccp14.ac.uk/ccp/web-
mirrors/powdcell/a_v/v_1/powder/e_cell.html