Revista de Ciencias Tecnológicas (RECIT). Volumen 8 (4): e423.   
17 
ISSN: 2594-1925 
[12]  FAO,  “Cell-based  food  and  precision 
fermentation,”  2024.  Accessed:  July  2024. 
[Online].  Available:  https://www.fao.org/food-
safety/scientific-advice/asuntos-transversales-y-
emergentes/cell-based-food/es/ 
[13]  L. Zhang, J.  Ling,  and  M.  Lin, “Artificial 
intelligence  in  renewable  energy:  A 
comprehensive  bibliometric  analysis,”  Energy 
Reports,  vol.  8,  pp.  14072–14088,  2022.  doi: 
10.1016/j.egyr.2022.10.347. 
[14] L. Espina-Romero et al., “Which Industrial 
Sectors Are Affected by Artificial Intelligence? A 
Bibliometric  Analysis  of  Trends  and 
Perspectives,” Sustainability, vol. 15, no. 16, Art. 
no. 16, 2023. doi: 10.3390/su151612176. 
[15] J. A. Nichols, H. W. Herbert Chan, and M. 
A.  Baker,  “Machine  learning:  applications  of 
artificial intelligence to imaging and diagnosis,” 
Biophysical reviews, vol. 11, pp. 111–118, 2019. 
doi: 10.1007/s12551-018-0449-9. 
[16] B. Mahesh, “Machine learning algorithms-a 
review,” Int. J. Sci. Res. (IJSR), vol. 9, no. 1, pp. 
381–386, 2020. doi: 10.21275/ART20203995. 
[17] L. Ma, M. Earles, N. Wisuthiphaet, J. Yi, and 
N. Nitin, “Accelerating the Detection of Bacteria 
in Food Using Artificial Intelligence and Optical 
Imaging,”  Applied  and  Environmental 
Microbiology,  2023.  doi:  10.1128/aem.01828-
22. 
[18] L. Munyanyi, “The Integration of Artificial 
Intelligence  in  Optimizing  Food  Supply  Chain 
Management:  Opportunities,  Challenges,  and 
Implications,”  presented  at  the  International 
Business Conference, 2024. [Online]. Available: 
at:https://internationalbusinessconference.com/
wp-content/uploads/2024/10/CP177-Munyanyi-
Integration-of-Artifical-Intelligence-final-
corrected.pdf](https://internationalbusinessconfe
rence.com/wp-content/uploads/2024/10/CP177-
Munyanyi-Integration-of-Artifical-Intelligence-
final-corrected.pdf. 
[19] A. Shrestha and A. Mahmood, “Review of 
deep  learning  algorithms  and  architectures,” 
IEEE Access,  vol.  7,  pp.  53040–53065,  2019. 
doi: 10.1109/ACCESS.2019.2912200. 
[20] S. Nevo et al., “ML for flood forecasting at 
scale,”  arXiv  preprint arXiv:1901.09583,  2019. 
doi: 10.48550/arXiv.1901.09583. 
[21]  S. A. Alsheibani, Y.  Cheung,  C.  Messom, 
and M. Ahosni, “Winning AI Strategy: Six-Steps 
to Create Value from Artificial Intelligence,” in 
AMCIS  2020  Proceedings,  2020,  pp.  1–10. 
Accessed:  [Online].  Available: 
https://core.ac.uk/download/pdf/326836031.pdf 
[22] S. Alsheibani, C. Messom, and Y. Cheung, 
“Re-thinking  the  competitive  landscape  of 
artificial intelligence,” 2020. Accessed: [Online]. 
Available: 
https://scholarspace.manoa.hawaii.edu/items/a4
21ac9a-765f-457d-98af-f70eb1767810 
[23] C. Xiao and J. Sun, “Deep Neural Networks 
(DNN),”  in  Introduction  to  Deep  Learning  for 
Healthcare,  Cham:  Springer  International 
Publishing, 2021, pp. 41–61. Accessed: [Online]. 
Available: 
https://play.google.com/store/books/details?id=0
D9OEAAAQBAJ&source=gbs_api. 
[24] A.  Masood  and  K. Ahmad,  “A  review  on 
emerging  artificial  intelligence  (AI)  techniques 
for  air  pollution  forecasting:  Fundamentals, 
application  and  performance,”  J.  Clean.  Prod., 
vol.  322,  p.  129072,  2021.  doi: 
10.1016/j.jclepro.2021.129072. 
[25] J. Xia, J. Liu, and Y. Zhuang, “Opportunities 
and challenges for fermentation optimization and 
scale-up technology in the artificial intelligence 
era,” Sheng wu Gong Cheng xue bao= Chinese 
Journal  of  Biotechnology,  vol.  38,  no.  11,  pp. 
4180–4199, 2022. 
[26]  T.  Vinestock,  M.  Short,  K.  Ward,  and  M. 
Guo,  “Computer-aided  chemical  engineering 
research  advances  in  precision  fermentation,” 
Current Opinion  in  Food Science, vol.  58, Art. 
no.  101196,  Jul.  2024.  DOI: 
10.1016/j.cofs.2024.101196.  
[27]  A.  Amore  and  S.  Philip,  “Artificial 
intelligence  in  food  biotechnology:  trends  and 
perspectives,”  Front.  Ind.  Microbiol.,  vol.  1,  p. 
1255505,  2023.  doi: 
10.3389/finmi.2023.1255505.