Revista de Ciencias Tecnológicas (RECIT). Volumen 8 (4): e423.
17
ISSN: 2594-1925
[Online]. Available: https://www.fao.org/food-
safety/scientific-advice/asuntos-transversales-y-
emergentes/cell-based-food/es/
[13] L. Zhang, J. Ling, and M. Lin, “Artificial
intelligence in renewable energy: A
comprehensive bibliometric analysis,” Energy
Reports, vol. 8, pp. 14072–14088, 2022. doi:
10.1016/j.egyr.2022.10.347.
[14] L. Espina-Romero et al., “Which Industrial
Sectors Are Affected by Artificial Intelligence? A
Bibliometric Analysis of Trends and
Perspectives,” Sustainability, vol. 15, no. 16, Art.
no. 16, 2023. doi: 10.3390/su151612176.
[15] J. A. Nichols, H. W. Herbert Chan, and M.
A. Baker, “Machine learning: applications of
artificial intelligence to imaging and diagnosis,”
Biophysical reviews, vol. 11, pp. 111–118, 2019.
doi: 10.1007/s12551-018-0449-9.
[16] B. Mahesh, “Machine learning algorithms-a
review,” Int. J. Sci. Res. (IJSR), vol. 9, no. 1, pp.
381–386, 2020. doi: 10.21275/ART20203995.
[17] L. Ma, M. Earles, N. Wisuthiphaet, J. Yi, and
N. Nitin, “Accelerating the Detection of Bacteria
in Food Using Artificial Intelligence and Optical
Imaging,” Applied and Environmental
Microbiology, 2023. doi: 10.1128/aem.01828-
22.
[18] L. Munyanyi, “The Integration of Artificial
Intelligence in Optimizing Food Supply Chain
Management: Opportunities, Challenges, and
Implications,” presented at the International
Business Conference, 2024. Accessed: [Online].
Available: CP177-Munyanyi-Integration-of-
Artifical-Intelligence-final-corrected.pdf.
[19] A. Shrestha and A. Mahmood, “Review of
deep learning algorithms and architectures,”
IEEE Access, vol. 7, pp. 53040–53065, 2019.
doi: 10.1109/ACCESS.2019.2912200.
[20] S. Nevo et al., “ML for flood forecasting at
scale,” arXiv preprint arXiv:1901.09583, 2019.
doi: 10.48550/arXiv.1901.09583.
[21] S. A. Alsheibani, Y. Cheung, C. Messom,
and M. Ahosni, “Winning AI Strategy: Six-Steps
to Create Value from Artificial Intelligence,” in
AMCIS 2020 Proceedings, 2020, pp. 1–10.
Accessed: [Online]. Available:
https://core.ac.uk/download/pdf/326836031.pdf
[22] S. Alsheibani, C. Messom, and Y. Cheung,
“Re-thinking the competitive landscape of
artificial intelligence,” 2020. Accessed: [Online].
Available:
https://scholarspace.manoa.hawaii.edu/items/a4
21ac9a-765f-457d-98af-f70eb1767810
[23] C. Xiao and J. Sun, “Deep Neural Networks
(DNN),” in Introduction to Deep Learning for
Healthcare, Cham: Springer International
Publishing, 2021, pp. 41–61. Accessed: [Online].
Available:
https://play.google.com/store/books/details?id=0
D9OEAAAQBAJ&source=gbs_api.
[24] A. Masood and K. Ahmad, “A review on
emerging artificial intelligence (AI) techniques
for air pollution forecasting: Fundamentals,
application and performance,” J. Clean. Prod.,
vol. 322, p. 129072, 2021. doi:
10.1016/j.jclepro.2021.129072.
[25] J. Xia, J. Liu, and Y. Zhuang, “Opportunities
and challenges for fermentation optimization and
scale-up technology in the artificial intelligence
era,” Sheng wu Gong Cheng xue bao= Chinese
Journal of Biotechnology, vol. 38, no. 11, pp.
4180–4199, 2022.
[26] T. Vinestock, M. Short, K. Ward, and M.
Guo, “Computer-aided chemical engineering
research advances in precision fermentation,”
Current Opinion in Food Science, vol. 101196,
2024.
[27] A. Amore and S. Philip, “Artificial
intelligence in food biotechnology: trends and
perspectives,” Front. Ind. Microbiol., vol. 1, p.
1255505, 2023. doi:
10.3389/finmi.2023.1255505.
[28] R. Nian, J. Liu, and B. Huang, “A review on
reinforcement learning: Introduction and
applications in industrial process control,”
Comput. Chem. Eng., vol. 139, p. 106886, 2020.
[29] C. S. Yee et al., “Smart Fermentation
Technologies: Microbial Process Control in
Traditional Fermented Foods,” Fermentation,
vol. 11, no. 6, p. 323, 2025.