[29] M. A. Almubaidin et al., "Machine learning
predictions for carbon monoxide levels in urban
environments," Results Eng., vol. 22, p. 102114,
Jun. 2024, doi: 10.1016/j.rineng.2024.102114.
[30] S. Bedi, K. Tiwari, P. A. P., S. H. Kota, and
N. M. A. Krishnan, "A neural operator for
forecasting carbon monoxide evolution in cities,"
npj Clean Air, vol. 1, no. 1, p. 2, Mar. 2025, doi:
10.1038/s44407-024-00002-5.
[31] F. Inal, "Artificial neural network prediction
of tropospheric ozone concentrations in Istanbul,
Turkey," CLEAN – Soil Air Water, vol. 38, no.
10, pp. 897–908, 2010, doi:
10.1002/clen.201000138.
[32] J. Yi and V. R. Prybutok, "A neural network
model forecasting for prediction of daily
maximum ozone concentration in an
industrialized urban area," Environ. Pollut., vol.
92, no. 3, pp. 349–357, Jan. 1996, doi:
10.1016/0269-7491(95)00078-X.
[33] W. Wang, W. Lu, X. Wang, and A. Y. T.
Leung, "Prediction of maximum daily ozone
level using combined neural network and
statistical characteristics," Environ. Int., vol. 29,
no. 5, pp. 555–562, Aug. 2003, doi:
10.1016/S0160-4120(03)00013-8.
[34] W. Mao, W. Wang, L. Jiao, S. Zhao, and A.
Liu, "Modeling air quality prediction using a
deep learning approach: Method optimization
and evaluation," Sustain. Cities Soc., vol. 65, p.
102567, Feb. 2021, doi:
10.1016/j.scs.2020.102567.
[35] M. Zeinalnezhad, A. G. Chofreh, F. A. Goni,
and J. J. Klemeš, "Air pollution prediction using
semi-experimental regression model and
adaptive neuro-fuzzy inference system," J.
Clean. Prod., vol. 261, p. 121218, Jul. 2020, doi:
10.1016/j.jclepro.2020.121218.
[36] Doreswamy, H. Ks, Y. Km, and I. Gad,
"Forecasting air pollution particulate matter
(PM2.5) using machine learning regression
models," Procedia Comput. Sci., vol. 171, pp.
2057–2066, Jan. 2020, doi:
10.1016/j.procs.2020.04.221.
[37] Y. Libao, Y. Tingting, Z. Jielian, L. Guicai,
L. Yanfen, and M. Xiaoqian, "Prediction of CO2
emissions based on multiple linear regression
analysis," Energy Procedia, vol. 105, pp. 4222–
4228, May 2017, doi:
10.1016/j.egypro.2017.03.906.
[38] Gobierno del Estado de Baja California,
Programa para mejorar la calidad del aire de
Mexicali: 2000–2005. Mexicali, B.C., Mexico:
ProAire, 2010. [Online]. Available:
https://www.gob.mx/cms/uploads/attachment/fil
e/69316/12_PROAIRE_MEXICALI_2000-
2005.pdf (accessed Aug. 25, 2025).
[39] Gobierno del Estado de Baja California,
Programa de gestión para mejorar la calidad del
aire del Estado de Baja California (ProAire BC
2011–2020). Mexicali, B.C., Mexico: Gobierno
de B.C., 2011. [Online]. Available:
https://www.gob.mx/cms/uploads/attachment/fil
e/310361/24_ProAire_Baja_California.pdf
(accessed Aug. 25, 2025).
[40] E. Salazar-Ruiz, J. B. Ordieres, E. P.
Vergara, and S. F. Capuz-Rizo, "Development
and comparative analysis of tropospheric ozone
prediction models using linear and artificial
intelligence-based models in Mexicali, Baja
California (Mexico) and Calexico, California
(US)," Environ. Model. Softw., vol. 23, no. 8, pp.
1056–1069, Aug. 2008, doi:
10.1016/j.envsoft.2007.11.009.
[41] H. Allende, C. Moraga, and R. Salas,
"Artificial neural networks in time series
forecasting: A comparative analysis,"
Kybernetika, vol. 38, no. 6, pp. 685–707, 2002.
[42] K. J. Cios, W. Pedrycz, and R. W.
Swiniarski, Data Mining Methods for Knowledge
Discovery. New York, NY, USA: Springer,
2012.
[43] B. Drozdowicz, S. J. Benz, A. S. M. Santa
Cruz, and N. J. Scenna, "A neural network based
model for the analysis of carbon monoxide
contamination in the urban area of Rosario," WIT
Trans. Ecol. Environ., vol. 21, p. 8, 1997, doi:
10.2495/AIR970641.