Science & Technology, vol. 110, pp. 375-384,
abr. 2021, doi: 10.1016/j.tifs.2021.02.014.
[7] A. T. Adesulu-Dahunsi, A. I. Sanni, K.
Jeyaram, J. O. Ojediran, A. O. Ogunsakin, y K.
Banwo, “Extracellular polysaccharide from
Weissella confusa OF126: Production,
optimization, and characterization”,
International Journal of Biological
Macromolecules, vol. 111, pp. 514-525, may
2018, doi: 10.1016/j.ijbiomac.2018.01.060.
[8] Nguyen, Phu-Tho, T.-T. Nguyen, D.-C. Bui,
P.-T. Hong, Q.-K. Hoang, y H.-T. Nguyen,
“Exopolysaccharide production by lactic acid
bacteria: the manipulation of environmental
stresses for industrial applications”, AIMS
Microbiology, vol. 6, n.o 4, pp. 451-469, 2020,
doi: 10.3934/microbiol.2020027.
[9] A. K. Abdalla et al., “Exopolysaccharides as
Antimicrobial Agents: Mechanism and Spectrum
of Activity”, Front. Microbiol., vol. 12, p.
664395, may 2021, doi:
10.3389/fmicb.2021.664395.
[10] T. Lin, C. Chen, B. Chen, J. Shaw, y Y.
Chen, “Optimal economic productivity of
exopolysaccharides from lactic acid bacteria with
production possibility curves”, Food Science &
Nutrition, vol. 7, n.o 7, pp. 2336-2344, jul. 2019,
doi: 10.1002/fsn3.1079.
[11] Z. Liu et al., “Characterization and
bioactivities of the exopolysaccharide from a
probiotic strain of Lactobacillus plantarum
WLPL04”, Journal of Dairy Science, vol. 100,
n.o 9, pp. 6895-6905, sep. 2017, doi:
10.3168/jds.2016-11944.
[12] R. D. Ayivi et al., “Lactic Acid Bacteria:
Food Safety and Human Health Applications”,
Dairy, vol. 1, n.o 3, pp. 202-232, oct. 2020, doi:
10.3390/dairy1030015.
[13] L. Yu et al., “Purification, characterization
and probiotic proliferation effect of
exopolysaccharides produced by
Lactiplantibacillus plantarum HDC-01 isolated
from sauerkraut”, Front. Microbiol., vol. 14, p.
1210302, jun. 2023, doi:
10.3389/fmicb.2023.1210302.
[14] J. Wang et al., “Optimization of
Exopolysaccharide Produced by Lactobacillus
plantarum R301 and Its Antioxidant and Anti-
Inflammatory Activities”, Foods, vol. 12, n.o 13,
p. 2481, jun. 2023, doi: 10.3390/foods12132481.
[15] J. Xiong, D. Liu, y Y. Huang,
“Exopolysaccharides from Lactiplantibacillus
plantarum: isolation, purification, structure–
function relationship, and application”, Eur Food
Res Technol, vol. 249, n.o 6, pp. 1431-1448, jun.
2023, doi: 10.1007/s00217-023-04237-6.
[16] D. Meghwal, K. K. Meena, R. Singhal, L.
Gupta, y N. L. Panwar, “Exopolysaccharides
producing lactic acid bacteria from goat milk:
Probiotic potential, challenges, and opportunities
for the food industry”, ap, vol. 12, n.o 2, dic.
2023, doi: 10.54085/ap.2023.12.2.22.
[17] M. Ayyash et al., “Exopolysaccharide
produced by the potential probiotic Lactococcus
garvieae C47: Structural characteristics,
rheological properties, bioactivities and impact
on fermented camel milk”, Food Chemistry, vol.
333, p. 127418, dic. 2020, doi:
10.1016/j.foodchem.2020.127418.
[18] Q. Xu, M.-M. Wang, X. Li, Y.-R. Ding, X.-
Y. Wei, y T. Zhou, “Antioxidant and anti-
inflammatory activities and action mechanisms
of exopolysaccharides from Lactiplantibacillus
plantarum Z-1”, Food Bioscience, vol. 62, p.
105247, dic. 2024, doi:
10.1016/j.fbio.2024.105247.
[19] T. Bouzaiene et al., “Exopolysaccharides
from Lactiplantibacillus plantarum C7 Exhibited
Antibacterial, Antioxidant, Anti-Enzymatic, and
Prebiotic Activities”, Fermentation, vol. 10, n.o
7, p. 339, jun. 2024, doi:
10.3390/fermentation10070339.
[20] M. Kowsalya et al., “Extraction and
characterization of exopolysaccharides from
Lactiplantibacillus plantarum strain PRK7 and
PRK 11, and evaluation of their antioxidant,
emulsion, and antibiofilm activities”,
International Journal of Biological
Macromolecules, vol. 242, p. 124842, jul. 2023,
doi: 10.1016/j.ijbiomac.2023.124842.