Revista de Ciencias Tecnológicas (RECIT). Volumen 8 (2): e404.
15
ISSN 2594-1925
September 2023,
https://doi.org/10.1039/D3RE00346A.
[9] I. Jabeen et al., “Green synthesis and
biological applications of Peganum harmala
mediated copper oxide nanoparticles,” J. Mol.
Struct., vol. 1325, no. October 2024, p. 140838,
2025,
https://doi.org/10.1016/j.molstruc.2024.140838.
[10] M. Nasrollahzadeh and S. Mohammad
Sajadi, “Green synthesis of copper nanoparticles
using Ginkgo biloba L. leaf extract and their
catalytic activity for the Huisgen [3+2]
cycloaddition of azides and alkynes at room
temperature,” J. Colloid Interface Sci., vol. 457,
pp. 141–147, November 2015,
https://doi.org/10.1016/j.jcis.2015.07.004.
[11] A. Thirumurugan, P. Aswitha, C.
Kiruthika, S. Nagarajan, and A. N. Christy,
“Green synthesis of platinum nanoparticles using
Azadirachta indica- An eco-friendly approach,”
Mater. Lett., vol. 170, pp. 175–178, May 2016,
https://doi.org/10.1016/j.matlet.2016.02.026.
[12] N. Nagar and V. Devra, “Green synthesis
and characterization of copper nanoparticles
using Azadirachta indica leaves,” Mater. Chem.
Phys., vol. 213, pp. 44–51, 2018,
https://doi.org/10.1016/j.matchemphys.2018.04.
007.
[13] Y. Wei, Z. Fang, L. Zheng, L. Tan, and E.
P. Tsang, “Green synthesis of Fe nanoparticles
using Citrus maxima peels aqueous extracts,”
Mater. Lett., vol. 185, no. 9, pp. 384–386,
December 2016,
https://doi.org/10.1016/j.matlet.2016.09.029.
[14] S. Shende, A. P. Ingle, A. Gade, and M.
Rai, “Green synthesis of copper nanoparticles by
Citrus medica Linn. (Idilimbu) juice and its
antimicrobial activity,” World J. Microbiol.
Biotechnol., vol. 31, no. 6, pp. 865–873, March
2015, https://doi.org/10.1007/s11274-015-1840-
3.
[15] P. Sharma, S. Pant, V. Dave, K. Tak, and
V. Sadhu, “Green synthesis and characterization
of copper nanoparticles by Tinospora cardifolia
to produce nature-friendly copper nano-coated
fabric and their antimicrobial evaluation,” J.
Microbiol. Methods, vol. 160, no.1 , pp. 107–
116, January 2019,
https://doi.org/10.1016/j.mimet.2019.03.007.
[16] T. Abu-Izneid et al., “Nutritional and
health beneficial properties of saffron (Crocus
sativus L): a comprehensive review,” Crit. Rev.
Food Sci. Nutr., vol. 62, no. 10, pp. 2683–2706,
April 2022,
https://doi.org/10.1080/10408398.2020.1857682
.
[17] X. Li et al., “Stigma and petals of Crocus
sativus L.: Review and comparison of
phytochemistry and pharmacology,” Arab. J.
Chem., p. 104918, August 2023,
https://doi.org/10.1016/j.arabjc.2023.104918.
[18] J. Tian et al., “Geographical origin
verification of Crocus sativus L. grown using
‘two-segment’ cultivation,” Ind. Crops Prod.,
vol. 215, p. 118611, September 2024,
https://doi.org/10.1016/j.indcrop.2024.118611.
[19] B. M. Razavizadeh and S. M. Ziaratnia,
“Ultrasound treatment on saffron (Crocus sativus
L.) corm: Impact on textural, morphological, and
microbial properties and stigma-derived
metabolite compositions,” Heliyon, vol. 10, no.
22, pp. 1–12, November 2024
https://doi.org/10.1016/j.heliyon.2024.e40548.
[20] M. Anguera-Tejedor et al., “Exploring
the therapeutic potential of bioactive compounds
from selected plant extracts of Mediterranean
diet constituents for cardiovascular diseases: A
review of mechanisms of action, clinical
evidence, and adverse effects”, Food Biosci.,
vol. 62, p. 105487, December 2024.,
https://doi.org/10.1016/j.bio.2024.105487.
[21] J. Tan et al., “Extracts from petal of the
Crocus sativus (saffron) possesses detoxification
effects on acetaminophen induced liver injury by
inhibiting hepatocyte apoptosis via regulating
Nrf2/HO-1 signaling,” Fitoterapia, vol. 182, p.
106452, April 2025,
https://doi.org/10.1016/j.fitote.2025.106452.
[22] S. Liu, H. Guo, Z. Kong, X. Han, Y. Gao,
and Y. Zhang, “Performance improvement and
application of copper-based nanomaterials in
membrane technology for water treatment : A