Acknowledgment
Authors thank CONACYT for the support
through the Scholarships No. 906807 and
903766 and by the National Laboratories
Program Project No. 299090 from the
National Laboratory for Cooling
Technology Research (LaNITeF). Thanks,
are extended to the School of Engineering
of the Anahuac University of Querétaro and
to the LaNITeF from the Engineering
Center of Industrial Development
(CIDESI).
Part of the result reported in this paper
comes from the project
VINCULACIÓN/2018/02 developed by
CIDESI and WALWORTH México with
the support of COMECYT by the
PROGRAMA PARA LA VINCULACIÓN
DE EMPRESAS DEL ESTADO DE
MÉXICO CON INSTITUCIONES DE
EDUCACIÓN SUPERIOR Y CENTROS
DE INVESTIGACIÓN.
References
[1] M. Ponmurugan, M. Ravikumar, and A.
Sundaramahalingam, “A review on utilization
of waste heat from domestic refrigerator,” Int.
Conf. Mater. Manuf. Mach. 2019, vol. 2128,
no. May 2015, p. 050015, 2019.
https://doi.org/10.1063/1.5117987
[2] Global electricity prices in 2018, by selected
country (in U.S. dollars per kilowatt hour).
https://www.statista.com/statistics/263263/elec
tricity-prices-in-selected-countries/.
[3] G. D. Librado, L. Alvaro, M. Santiyanes, and
H. G. Cuatzin, “Dynamic Behavior Model for
Cooling System Based on Vapor Compression
Experimental Analysis and Simulation
Validation Grounded on a Reduced Order
Differential Equation with Few Degrees of
Freedom,” in ICONS 2018: The Thirteenth
International Conference on Systems, 2018, no.
c, pp. 57–62.
https://www.thinkmind.org/download.php?arti
cleid=icons_2018_4_20_48003
[4] K. Talukdar, “Modeling of Solar Photovoltaic
Assisted Vapor Absorption Refrigeration
System for Running an Ice Factory,” IOSR J.
Mech. Civ. Eng., vol. 14, no. 03, pp. 60–69,
2017. https://doi.org/10.9790/1684-
1403016069
[5] The Vapor Compression Refriferation Cycle,
Step by Step, Araner, February 2018,
https://www.araner.com/blog/vapor-
compression-refrigeration-cycle/
[6] M. Ahmad, A. Bontemps, H. Sallée, and D.
Quenard, “Thermal testing and numerical
simulation of a prototype cell using light
wallboards coupling vacuum isolation panels
and phase change material,” Energy Build., vol.
38, no. 6, pp. 673–681, 2006.
https://doi.org/10.1016/j.enbuild.2005.11.002
[7] H. Binici, O. Aksogan, M. N. Bodur, E. Akca,
and S. Kapur, “Thermal isolation and
mechanical properties of fibre reinforced mud
bricks as wall materials,” Constr. Build. Mater.,
vol. 21, no. 4, pp. 901–906, 2007.
https://doi.org/10.1016/j.conbuildmat.2005.11.
004
[8] S. L. Garrett, J. A. Adeff, T. J. Hofler, S. L.
Garrett, J. A. Adeff, and T. J. Hoflers,
“Thermoacoustics refrigerator for space
application,” J. Thermophys. Heat Transf., vol.
7, no. 4, pp. 595–599, 1993.
https://doi.org/10.2514/3.466
[9] P. Gorria, J. L. Sánchez Llamazares, P.
Álvarez, M. J. Pérez, J. Sánchez Marcos, and J.
A. Blanco, “Relative cooling power
enhancement in magneto-caloric
nanostructured Pr2Fe17,” J. Phys. D. Appl.
Phys., vol. 41, no. 19, pp. 1–5, 2008.
https://doi.org/10.1088/0022-
3727/41/19/192003
[10] T. Moulton and G. K. Ananthasuresh,
“Micromechanical devices with embedded
electro-thermal-compliant actuation,” Sensors
Actuators, A Phys., vol. 90, no. 1–2, pp. 38–48,
2001. https://doi.org/10.1016/S0924-
4247(00)00563-X.
[11] M. S. Layton and J. O’Hagan, Comparison of
Alternate Cooling Technologies for California
Power Plants:Economic, Environmental and
Other Tradeoffs, 1st ed., vol. 2. Sacramento,
California, 2002.
http://large.stanford.edu/courses/2018/ph241/d
uboc2/docs/AR-1167.pdf.